Climate change impacts on groundwater: a growing challenge for water resources sustainability in Brazil
admin June 21, 2025

Climate change impacts on groundwater: a growing challenge for water resources sustainability in Brazil

  • Addisie, M.B. (2022). Groundwater recharge estimation using water table fluctuation and empirical methods. H2Open Journal, 5(3), pp.457–468.

  • Adomako, D., Maloszewski, P., Stumpp, C., Osae, S., & Akiti, T. T. (2010). Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 55(8), 1405–1416.

    Article 

    Google Scholar 

  • Andualem, T. G., Demeke, G. G., Ahmed, I., Dar, M. A., & Yibeltal, M. (2021). Groundwater recharge estimation using empirical methods from rainfall and streamflow records. Journal of Hydrology: Regional Studies, 37, 100917.

    Google Scholar 

  • Al Atawneh, D., Cartwright, N., & Bertone, E. (2021). Climate change and its impact on the projected values of groundwater recharge: A review. Journal of Hydrology, 601, 126602.

    Article 

    Google Scholar 

  • Albuquerque, C.G.D. (2013). Recarga de aquífero em aluvião no semiárido: Estudo de caso em Pesqueira–PE (Master’s thesis, Universidade Federal de Pernambuco), 38.

  • Alvares, C. A., Stape, J. L., Meteorol, & Sentelhas, P. C. (2013a). Köppen’s climate classification map for Brazil. Meteorol. Z., p. 18. https://doi.org/10.1127/0941-2948/2013/0507

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., & de Moraes Gonçalves, J. L. (2013b). Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology, 113, 407–427. https://doi.org/10.1007/s00704-012-0796-6

    Article 

    Google Scholar 

  • ANA – Agência Nacional de Águas. (2010). Os efeitos das mudanças climáticas sobre os recursos hídricos: Desafios para a gestão. ANA, Brasília. 20 pp.

  • ANA – Agência Nacional de Águas e Saneamento Básico. (2024). Impacto da mudança climática nos recursos hídricos do Brasil. Brasília. 96 pp.

  • ANA – Agência Nacional de Águas. (2022). Conjuntura dos recursos hídricos no Brasil. Brasília.  Accessed on 18 February 2025

  • Arantes, L.T., Carvalho, A.C.P., Carvalho, A.P.P., Lorandi, R., Moschini, L.E., & Di Lollo, J.A. (20210. Surface runoff associated with climate change and land use and land cover in southeast region of Brazil. Environmental Challenges, 3, 100054.

  • ASCE—American Society of Civil Engineers. (1969). Task force on effect of urban development on flood discharges, committee on flood control, “effect of urban development on flood discharges—Current knowledge and future needs.” J Hydraul Division, 95(HY1), 287–309.

    Google Scholar 

  • Ballarin, A. S., Sone, J. S., Gesualdo, G. C., Schwamback, D., Reis, A., Almagro, A., & Wendland, E. C. (2023). CLIMBra-climate change dataset for Brazil. Scientific Data, 10(1), 47.

    Article 

    Google Scholar 

  • Brazil, IBGE, (2023). Demographic Census: National data. Brazilian Institute of Geography and Statistics Foundation, Brazil.
    Accessed 18 February 2025.

  • Cambraia Neto, A. J., Rodrigues, L. N., da Silva, D. D., & Althoff, D. (2021). Impact of climate change on groundwater recharge in a Brazilian Savannah watershed. Theoretical and Applied Climatology, 143(3–4), 1425–1436.

    Article 

    Google Scholar 

  • Fazal, M. A., Imaizumi, M., Ishida, S., Kawachi, T., & Tsuchihara, T. (2005). Estimating groundwater recharge using the SMAR conceptual model calibrated by genetic algorithm. Journal of Hydrology, 303(1–4), 56–78.

    Article 

    Google Scholar 

  • Galvão, P., Hirata, R., & Conicelli, B. (2018). Estimating groundwater recharge using GIS-based distributed water balance model in an environmental protection area in the city of Sete Lagoas (MG), Brazil. Environmental Earth Sciences, 77, 1–19.

    Article 

    Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

  • Hirata, R., Suhogusoff, A. V., Marcellini, S. S., Villar, P. C., & Marcellini, L. (2019). As águas subterrâneas e sua importância ambiental e socioeconômica para o Brasil, [Technical report]. Instituto de Geociências (USP). São Paulo, 63.

  • Holman, I. P. (2006). Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward. Hydrogeology Journal, 14, 637–647.

    Article 

    Google Scholar 

  • Hosseinzadehtalaei, P., Tabari, H., & Willems, P. (2020). Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. Journal of Hydrology, 590, 125249.

    Article 

    Google Scholar 

  • Hughes, A., Mansour, M., Ward, R., Kieboom, N., Allen, S., Seccombe, D., Charlton, M., & Prudhomme, C. (2021). The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598, 126336.

    Article 

    Google Scholar 

  • Intriago, A., Galvão, P., & Conicelli, B. (2023). Use of GIS and R to estimate climate change impacts on groundwater recharge in Portoviejo River watershed, Ecuador. Journal of South American Earth Sciences, 124, 104288.

    Article 

    Google Scholar 

  • Koerner, R. M., & Daniel, D. E. (1997). Final covers for solid waste landfills and abandoned dumps (p. 256). ASCE Press.

    Book 

    Google Scholar 

  • Kurylyk, B. L., & MacQuarrie, K. T. (2013). The uncertainty associated with estimating future groundwater recharge: A summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. Journal of Hydrology, 492, 244–253.

    Article 

    Google Scholar 

  • Lal, M., Sau, B. L., Patidar, J., & Patidar, A. (2018). Climate change and groundwater: Impact, adaptation and sustainable. International Journal of Bio-Resource and Stress Management, 9(3), 408–415.

  • Melati, M. D., Fleischmann, A. S., Fan, F. M., Paiva, R. C., & Athayde, G. B. (2019). Estimates of groundwater depletion under extreme drought in the Brazilian semi-arid region using GRACE satellite data: Application for a small-scale aquifer. Hydrogeology Journal, 27(8), 2789–2802.

    Article 

    Google Scholar 

  • Melo, D. C., & Wendland, E. (2017). Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone. Anais Da Academia Brasileira De Ciências, 89, 391–406.

    Article 

    Google Scholar 

  • NASA JPL. (2020). NASADEM Merged DEM Global 1 arc second V001. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2024-05-08 from https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001

  • Nascimento, R. D. S., Borges, V. P., & Melo, D. D. C. D. (2023). Implications of climate change on water availability in a seasonally dry tropical forest in the Northeast of Brazil. Revista Ceres, 70, 1–11.

    Article 

    Google Scholar 

  • Neves, E. C. (2019). Governance, water security and citizenship in Brazil, 2019. Desenvolvimento Em Debate, 7(2), 49–65.

    Article 

    Google Scholar 

  • Ogrosky, H.O., & Mockus, V. (1964). Hydrology of agricultural lands. In V. T. Chow (Ed.), Handbook of applied hydrology (pp.21–22). McGraw–Hill.

  • Okkonen, J., Jyrkama, M., & Kløve, B. (2010). A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland). Hydrogeology Journal, 18(2), 429.

    Article 

    Google Scholar 

  • Pereira, B. H. F., Dereczynski, C., da Silva Junior, G. C., & Marques, E. A. G. (2022). Projected climate change impacts on groundwater recharge in the Urucuia aquifer system. Brazil. International Journal of Climatology, 42(16), 8822–8838.

    Article 

    Google Scholar 

  • Pinto, E. J. Azambuja, A. M. S. de, Farias, J. A. M., Salgueiro, J. P. de B., & Pickbrenner, K. (2011). Atlas pluviométrico do Brasil: Isoietas mensais, isoietas trimestrais, isoietas anuais, meses mais secos, meses mais chuvosos, trimestres mais secos, trimestres mais chuvosos. 1 DVD. Escala 1.5:000.000. CPRM, 2011. Accessed on 12 May 2024.

  • Raulino, J. B., Silveira, C. S., & Lima Neto, I. E. (2021). Assessment of climate change impacts on hydrology and water quality of large semi-arid reservoirs in Brazil. Hydrological Sciences Journal, 66(8), 1321–1336.

    Article 

    Google Scholar 

  • Ribeiro, C. L., de Mello, C. R., & Guzman, J. A. (2024). Groundwater storage trend in headwater basins: Shreds of evidence from the last decades in Minas Gerais state. Brazil. Environmental Earth Sciences, 83(10), 327.

    Article 

    Google Scholar 

  • Running, S., Mu, Q., Zhao, M., & Moreno, A. (2021). MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2024-10-10 from https://doi.org/10.5067/MODIS/MOD16A2GF.061

  • Santos, H. G., Carvalho Junior, W. De., Dart, R., Aglio, M. L. D., Sousa, J. S. de., Pares, J. G., Fontana, A., Martins, A. L. da S., & Oliveira, A. P. de. (2011) . O novo mapa de solos do Brasil: Legenda atualizada. Rio de janeiro: Embrapa Solos, 2011. 67 p. (Embrapa Solos. Documentos, 130.) 1 mapa, color. Escala 1:5.000.000. https://geoinfo.cnps.embrapa.br/layers/geonode%3Abrasil_solos_5m_20201104#more

  • Seigerman, C. K., Leite, N. S., Martins, E. S. P., & Nelson, D. R. (2024). At the extremes: Assessing interrelations among the impacts of and responses to extreme hydroclimatic events in Ceará, Northeast Brazil. Journal of Hydrology, 632, 130850.

    Article 

    Google Scholar 

  • Souza, C. M., Jr., Shimbo, Z., & J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W., & De Oliveira, S.W. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sensing, 12(17), 2735.

    Article 

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach towards a rational classification of climate. Geographical Review, 38, 55–94.

    Article 

    Google Scholar 

  • Thornthwaite, C.W., & Mather, J.R. (1955). The water balance. Publications in climatology. Laboratory of climatology. New Gersey 8, 104.

  • Touhami, I., Chirino, E., Andreu, J. M., Sánchez, J. R., Moutahir, H., & Bellot, J. (2015). Assessment of climate change impacts on soil water balance and aquifer recharge in a semiarid region in south east Spain. Journal of Hydrology, 527, 619–629.

    Article 

    Google Scholar 

  • World Bank Group. (2021). Climate risk country profile, Brazil. https://climateknowledgeportal.worldbank.org/sites/default/files/2021-07/15915-WB_Brazil%20Country%20Profile-WEB.pdf

  • Zagana, E., Obeidat, M., Kuells, C., & Udluft, P. (2007). Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: A case study in Jordan. Hydrological Processes: An International Journal, 21(16), 2112–2123.

    Article 

    Google Scholar 

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *