
Climate change-driven northward expansion of the mediterranean orchid Ophrys apifera from genetic and ecological perspectives
Abbass, K. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29, 42539–42559. (2022).
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. (2011).
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958. (2016).
Google Scholar
Wei, L. et al. Predicting suitable habitat for the endangered tree Ormosia microphylla in China. Sci. Rep. 14, 10330. (2024).
Google Scholar
Adedoja, O. A., Dormann, C. F., Coetzee, A. & Geerts, S. Moving with your mutualist: Predicted climate-induced mismatch between Proteaceae species and their avian pollinators. J. Biogeogr. 51, 992–1003. (2024).
Google Scholar
Cho, K. H., Park, J.-S., Kim, J. H., Kwon, Y. S. & Lee, D.-H. Modeling the distribution of invasive species (Ambrosia spp) using regression kriging and Maxent. Front. Ecol. Evol. 10, 4523. (2022).
Google Scholar
Di Febbraro, M. et al. Different facets of the same niche: Integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Glob. Change Biol. 29, 5509–5523. (2023).
Google Scholar
van der Pijl, L. & Dodson, C. An atlas of orchid pollination. America, Africa, Asia and Australia 308 (A.A. Balkema Publishers, 1966).
Dearnaley, J. D. W. Further advances in orchid mycorrhizal research. Mycorrhiza 17, 475–486. (2007).
Google Scholar
Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie der Zentraleuropäischen Flora (VEB Verlag von Gustav Fischer,, 1965).
Kühn, R., Cribb, P. & Pedersen, H. Æ. Field guide to the orchids of Europe and the Mediterranean (Kew Publishing, 2019).
Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic Part 11. Preslia 94, 335–427 (2022).
Bateman, R. M. Systematics and conservation of British and Irish orchids: a “state of the union” assessment to accompany Atlas 2020. Kew. Bull. 77, 355–402. (2022).
Google Scholar
Osiadacz, B. & Kręciała, M. Ophrys apifera Huds (Orchidaceae), a new orchid species to the flora of Poland. Biodiv. Res. Conserv. 36, 11–16 (2014).
Wójcicka-Rosińska, A., Rosiński, D. & Szczęśniak, E. Ophrys apifera Huds (Orchidaceae) on a heap of limestone mine waste – the first population found in the Sudetes and the second in Poland. Biodiversity Research and Conservation 59, 9–14. (2020).
Google Scholar
Mattiasson, G. Om fyra nya Skånearter. Sven. Bot. Tidskr. 109, 340–345 (2015).
Zimmermann, F. Verbreitung und gefährdungssituation der heimischen orchideen (orchidaceae) in Brandenburg Teil 3: Stark gefährdete, gefährdete und ungefährdete Arten sowie Arten mit unzureichender Datenlage. Naturschutz und Landschaftspflege in Brandenburg 20, 80–96 (2011).
Lüdicke, T. Erstnachweis für Ophrys apifera Hudson in Brandenburg. Natursch. Landschaftspfl. Brbg. 16, 57–58 (2007).
Zimmermann, F. Die Orchideen Brandenburgs – Verbreitung, Gefährdung. Schutz. Ber. Arbeitskrs. Heim. Orchid. 35, 4–147 (2018).
Kullenberg, B. Studies in Ophrys pollination. Zool. Bidrag Fran Uppsala 34, 1–340 (1961).
Kullenberg, B. & Bergström, G. Hymenoptera Aculeata males as pollinators of Ophrys orchids. Zoolog. Scr. 5, 13–23 (1976).
Fenster, C. B. & Martén-Rodríguez, S. Reproductive assurance and the evolution of pollination specialization. Int. J. Plant Sci. 168, 215–228. (2007).
Google Scholar
Darwin, C. Various Contrivances by Which Orchids Are Fertilized by Insects. (John Murray, 1877).
Claessens, J. & Kleynen, J. Investigations on the autogamy in Ophrys apifera Hudson. Jahresbericht des Naturwissenschaftlichen Vereins Wuppertal 55, 62–77 (2002).
Mossberg, B. & Æ., P. H. Orkideer i Europa. (Gyldendal, 2017).
Kullenberg, B. Hymenoptera aculeata males as pollinators of Ophrys orchids. Zool. Scr. 5, 13–23 (1976).
Claessens, J. & Kleynen, J. The Flower of the European Orchid: Form and Function (Self Published, 2011).
Ackerman, J. D. et al. Beyond the various contrivances by which orchids are pollinated: global patterns in orchid pollination biology. Bot. J. Linnean Soc. 2023, boac082. (2023).
Wells, T. C. E. & Cox, R. in Population ecology of terrestrial orchids (eds T. C. E. Wells & J. H. Willems) 47–61 (Academic Publishing, 1991).
Heinrich, W. & Dietrich, H. Heimische Orchideen in urbanen Biotopen. Feddes Repertorium 119, 388–432. (2008).
Google Scholar
La Croix, I. The new encyclopedia of orchids : 1500 species in cultivation (Timber Press, 2008).
Pedersen, H. A. & Faurholdt, N. Ophrys: a guide to the bee orchids of Europe (Kew Publishing, 2007).
Harrap, A. & Harrap, S. Orchids of Britain and Ireland. 2nd ed. (A and C Black Publ. Ltd., 2009).
Summerhayes, V. S. Wild Orchids of Britain (Collins, 1951).
Doyle, J. J. & Doyle, J. L. A Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
Soliva, M., Kocyan, A. & Widmer, A. Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. Mol. Phylogenet. Evol. 20, 78–88. (2001).
Google Scholar
Sun, Y., Skinner, D. Z., Liang, G. H. & Hulbert, S. H. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89, 26–32. (1994).
Google Scholar
Cotrim, H. et al. Isolation and characterization of novel polymorphic nuclear microsatellite markers from Ophrys fusca (Orchidaceae) and cross-species amplification. Conserv. Genet. 10, 739–742. (2009).
Google Scholar
Cotrim, H., Monteiro, F., Sousa, E., Pinto, M. J. & Fay, M. F. Marked hybridization and introgression in Ophrys sect Pseudophrys in the western Iberian Peninsula. Am. J. Bot. 103, 677–691. (2016).
Google Scholar
Barton, N. H. & Slatkin, M. A Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56, 409–415. (1986).
Google Scholar
Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. (2008).
Google Scholar
Goudet, J. (2001).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. (2000).
Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587. (2003).
Google Scholar
Li, Y.-L. & Liu, J.-X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. (2018).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. (2005).
Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. (1996).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. (2004).
Google Scholar
Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U. S. A. 98, 4563–4568. (2001).
Google Scholar
Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326. (2010).
Google Scholar
Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273. (1979).
Google Scholar
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. (1989).
Google Scholar
Nei, M. Molecular evolutionary genetics (Columbia Univ, 1987).
Eliades, N. G. & Eliades, D. G. Haplotype Analysis: Software for Analysis of Haplotypes Data. (Forest Genetics and Forest Tree Breeding, Georg-Augst University Goettingen, 2009).
Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999).
Google Scholar
Slatkin, M. Inbreeding coefficients and coalescence times. Genet. Res. 58, 167–175. (1991).
Google Scholar
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. (2010).
Google Scholar
Liedloff A. C. Mantel Nonparametric Test Calculator. Version 2.0 (School of Natural Resource Sciences. Brisbane, QueenslandUniversity of Technology, 1999).
GBIF.org. The Global Biodiversity Information Facility (2023).
Tashev, A., Vitkova, A. & Russakova, V. Distribution of Ophrys apifera Huds (Orchidaceae) in Bulgaria. Flora Mediterranea 16, 247–252 (2006).
Szatmari, P.-P. Ophrys apifera (Orchidaceae) in Transylvanian Flora, Romania. Acta Horti Bot. Bucurest. 43, 31–40 (2016).
Anastasiu, P. New chorological data for rare vascular plants from Romania. Acta Horti Bot. Bucurest. 42, 57–62 (2015).
Djordjević, V., Lakušić, D., Jovanović, S. & Stevanović, V. Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain. Wulfenia 24, 143–162 (2017).
Luoto, M. & Heikkinen, R. K. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob. Change Biol. 14, 483–494. (2008).
Google Scholar
Sorbe, F., Gränzig, T. & Förster, M. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Eco. Inform. 76, 102124. (2023).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. (2011).
Google Scholar
Phillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. (2006).
Google Scholar
Phillips, S. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. (2008).
Google Scholar
Fick, S. & Hijmans, R. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. (2017).
Google Scholar
Anderson, R. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393. (2010).
Google Scholar
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819. (2011).
Google Scholar
Brown, J. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. (2014).
Google Scholar
Brown, J. L., Bennett, J. R. & French, C. M. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. (2017).
Google Scholar
McGee, R., Williams, S., Poulton, R. & Moffitt, T. A longitudinal study of cannabis use and mental health from adolescence to early adulthood. Addiction 95, 491–503. (2000).
Google Scholar
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605. (2020).
Google Scholar
Li, J. et al. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 129, 1452. (2021).
Google Scholar
Yukimoto, S. et al. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Japan. Ser. II 97, 931–965. (2019).
Parding, K. M. et al. GCMeval – an interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. (2020).
Google Scholar
Owens, H. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18. (2013).
Google Scholar
Mason, S. & Graham, N. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166. (2002).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. (2006).
Google Scholar
Kolanowska, M. Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections. Sci. Rep. 13, 15242. (2023).
Google Scholar
Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains Pakistan. PLoS ONE 16, e0260031. (2022).
Google Scholar
Pereyra, P. J. & Guiaşu, R. C. Debate over the importance and meaning of native range in invasion biology: reply to Courchamp et al. Conserv. Biol. 34, 1044-1046. (2020).
Carné, A., Vieites, D. R. & Sillero, N. Potential effects of climate change on the threatened Malagasy poison frogs: A multispecies approach. Ecosphere 16, e70315. (2025).
Google Scholar
Baker, H. G. & Stebbins, G. L. The Genetics of Colonizing Species (Academic Press, 1965).
Hamrick, J. L. & Godt, M. J. W. in Plant Population Genetics, Breeding and Genetic Resources (eds A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir) 43–63 (Sinauer Press, 1989).
Charlesworth, B., Jordan, C. Y. & Charlesworth, D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution 68, 1339–1350. (2014).
Google Scholar
Kalisz, S. et al. The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). Am. J. Bot. 86, 1239–1247 (1999).
Google Scholar
Cisternas-Fuentes, A., Forehand, C., Morris, K., Busch, J. W. & Koski, M. H. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. New Phytol. 245, 2268–2278. (2025).
Google Scholar
Charlesworth, D. Evolution of plant breeding systems. Curr. Biol. 16, R726-735. (2006).
Google Scholar
Holsinger, K. E. The scope and the limits of conservation genetics. Evolution 50, 2558–2561. (1996).
Google Scholar
Macnair, M. R., Macnair, V. E. & Martin, B. E. Adaptive speciation in Mimulus: an ecological comparison of M. cupriphilus with its presumed progenitor M. guttatus. New Phytol. 112, 269–279. (1989).
Google Scholar
Squirrell, J., Hollingsworth, P. M., Bateman, R. M., Tebbitt, M. C. & Hollingsworth, M. L. Taxonomic complexity and breeding system transitions: conservation genetics of the Epipactis leptochila complex (Orchidaceae). Mol Ecol 11, 1957–1964. (2002).
Google Scholar
Tałałaj, I., Ostrowiecka, B., Włostowska, E., Rutkowska, A. & Brzosko, E. The ability of spontaneous autogamy in four orchid species: Cephalanthera rubra, Neottia ovata, Gymnadenia conopsea, and Platanthera bifolia. Acta Biol. Cracov. Bot. 59, 51–61 (2017).
Suetsugu, K. Delayed autonomous self-pollination in two Japanese varieties of Epipactis helleborine (Orchidaceae). Bot. J. Linn. Soc. 173, 733–743. (2013).
Google Scholar
Ackerman, J. D. in Proceedings of the Eleventh World Orchid Conference. (ed K. Tan) 98–101 (Eleventh World Orchid Conference).
Catling, P. M. in Orchid Biology: Reviews and Perspectives (ed J. Arditti) 121–158 (Timber Press, 1990).
Jacquemyn, H., Micheneau, C., Roberts, D. L. & Pailler, T. Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J. Biogeogr. 32, 1751–1761. (2005).
Google Scholar
Eckert, C. G. et al. Plant mating systems in a changing world. Trends Ecol. Evol. 25, 35–43. (2010).
Google Scholar
Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 280, 20130133. (2013).
Google Scholar
Cheptou, P. O. Does the evolution of self-fertilization rescue populations or increase the risk of extinction?. Ann. Bot. 123, 337–345. (2019).
Google Scholar
Rempicci, M. & Buono, S. Autogamia accidentale in Ophrys sphegodes subsp sphegodes. J.l Europäischer Orchideen 52, 349–354 (2020).
Oikonomidis, S. et al. The effect of pollen origin (self- and cross-pollination) on seed production and viability in Ophrys (Orchidaceae). Bot. Lett. 171, 500–508. (2024).
Google Scholar
Arditti, J. & Ghani, A. K. A. Tansley Review No. 110.: Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145, 367–421. (2000).
Molnár, V. A. Atlas of Hungarian orchids [in Hungarian] (Kossuth 2011).
Bateman, R. M. et al. Species arguments: clarifying competing concepts of species delimitation in the pseudo-copulatory orchid genus Ophrys. Bot. J. Linn. Soc. 165, 336–347. (2011).
Google Scholar
Boss, I. & P. Caligari. Selection methods in plant. breeding. 2.ed. (Springer, Dordrecht, Netherlands, 2008)
Devey, D. S., Bateman, R. M., Fay, M. F. & Hawkins, J. A. Genetic structure and systematic relationships within the Ophrys fuciflora aggregate (Orchidaceae: Orchidinae): high diversity in Kent and a wind-induced discontinuity bisecting the Adriatic. Ann. Bot. 104, 483–495. (2009).
Google Scholar
Jersáková, J. & Malinová, T. Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol. 176, 237–241. (2007).
Google Scholar
Vandepitte, K. et al. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 21, 4206–4215. (2012).
Google Scholar
Soliva, M. & Widmer, A. Gene flow across species boundaries in sympatric, sexually deceptive Ophrys (Orchidaceae) species. Evolution 57, 2252–2261. (2003).
Google Scholar
Mant, J., Peakall, R. & Schiestl, F. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys?. Evolution 59, 1449–1463. (2005).
Google Scholar
Celary, W. & Flaga, S. Pszczoły dziko żyjące (Hymenoptera: Apoidea: Apiformes) – klucz do rozpoznawania rodzin i rodzajów pszczół wraz z ich charakterystyką (BioDar, 2024).
Forrest, A. D., Hollingsworth, M. L., Hollingsworth, P. M., Sydes, C. & Bateman, R. M. Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity (Edinb.) 92, 218–227. (2004).
Google Scholar
Ziegenspeck, H. in Lebensgeschichte des Blütenpflanzen Mitteleuropas (eds O. Kirchner, W. Loew, & C. Schroeter) 1–840 ( Eugen Ulmer, 1936).
Anderson, J. & Song, B. H. Plant adaptation to climate change – Where are we?. J. Syst. Evol. 58, 533–545. (2020).
Google Scholar
Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103. (2013).
Google Scholar
Wesselmann, M., Apostolaki, E. & Anton, A. Species range shifts, biological invasions and ocean warming. Mar. Ecol. Progress Ser. (2024).
Lenoir, J. & Svenning. J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions.Ecography, 38(1), 15–28. (2015)
Rubenstein, M. A. et al. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. Environ. Evid. 12, 7. (2023).
Google Scholar
Sanczuk, P. et al. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science 386, 193–198. (2024).
Google Scholar
Charitonidou, M., Kougioumoutzis, K., Karypidou, M. C. & Halley, J. M. “Fly to a Safer North”: distributional shifts of the Orchid Ophrys insectifera L. due to climate change. Biol. Basel 11, 125. (2022).
Google Scholar
Bosso, L. et al. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Eco. Inform. 79, 102402. (2024).
Google Scholar
Bellis, J. et al. Identifying predictors of translocation success in rare plant species. Conserv. Biol. 38, e14190. (2024).
Google Scholar
Seaton, P. T. & Pritchard, H. W. Orchid seed stores for sustainable use: a model for future seed-banking activities. Lankesteriana 11, 349–353 (2011).
Reiter, N. et al. Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol. 217, 81–95. (2016).
Google Scholar
Zhao, D. K., Mou, Z. M. & Ruan, Y. L. Orchids acquire fungal carbon for seed germination: pathways and players. Trends Plant Sci 29, 733–741. (2024).
Google Scholar
Kolanowska, M. & Ruszkiewicz-Michalska, M. The long-term survival and climatic distribution of mixotrophic and mycoheterotrophic orchids. Acta Soc. Bot. Pol. 92, 1–16. (2023).
Google Scholar
Bateman, R. M., Sramkó, G. & Paun, O. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Ann. Bot. 121, 85–105. (2018).
Google Scholar
Liebel, H. et al. C ad N stable isotope signatures reveal constraints to nutritional modes in orchids from the mediterranean and macaronesia. Am. J. Bot. 97, 903–912. (2010).
Google Scholar
Mennicken, S., Paula, C. C. P., Vogt-Schilb, H. & Jersáková, J. Diversity of mycorrhizal fungi in temperate orchid species: comparison of culture-dependent and culture-independent methods. J. Fungi Basel 10, 125 (2024).
Kolanowska, M. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Sci. Rep. 13, 6848. (2023).
Google Scholar
QGIS Geographic Information System (QGIS Association, 2024).
ArcGIS Desktop Release 10.8.2 (nvironmental Systems Research Institute, Redlands, CA (2021).