Climate change-driven northward expansion of the mediterranean orchid Ophrys apifera from genetic and ecological perspectives
admin August 13, 2025

Climate change-driven northward expansion of the mediterranean orchid Ophrys apifera from genetic and ecological perspectives

  • Abbass, K. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29, 42539–42559. (2022).

    Article 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958. (2016).

    Article 
    ADS 

    Google Scholar 

  • Wei, L. et al. Predicting suitable habitat for the endangered tree Ormosia microphylla in China. Sci. Rep. 14, 10330. (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adedoja, O. A., Dormann, C. F., Coetzee, A. & Geerts, S. Moving with your mutualist: Predicted climate-induced mismatch between Proteaceae species and their avian pollinators. J. Biogeogr. 51, 992–1003. (2024).

    Article 

    Google Scholar 

  • Cho, K. H., Park, J.-S., Kim, J. H., Kwon, Y. S. & Lee, D.-H. Modeling the distribution of invasive species (Ambrosia spp) using regression kriging and Maxent. Front. Ecol. Evol. 10, 4523. (2022).

    Article 

    Google Scholar 

  • Di Febbraro, M. et al. Different facets of the same niche: Integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Glob. Change Biol. 29, 5509–5523. (2023).

    Article 
    CAS 

    Google Scholar 

  • van der Pijl, L. & Dodson, C. An atlas of orchid pollination. America, Africa, Asia and Australia 308 (A.A. Balkema Publishers, 1966).

  • Dearnaley, J. D. W. Further advances in orchid mycorrhizal research. Mycorrhiza 17, 475–486. (2007).

    Article 
    PubMed 

    Google Scholar 

  • Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie der Zentraleuropäischen Flora (VEB Verlag von Gustav Fischer,, 1965).

  • Kühn, R., Cribb, P. & Pedersen, H. Æ. Field guide to the orchids of Europe and the Mediterranean (Kew Publishing, 2019).

  • Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic Part 11. Preslia 94, 335–427 (2022).

    Google Scholar 

  • Bateman, R. M. Systematics and conservation of British and Irish orchids: a “state of the union” assessment to accompany Atlas 2020. Kew. Bull. 77, 355–402. (2022).

    Article 

    Google Scholar 

  • Osiadacz, B. & Kręciała, M. Ophrys apifera Huds (Orchidaceae), a new orchid species to the flora of Poland. Biodiv. Res. Conserv. 36, 11–16 (2014).

    Google Scholar 

  • Wójcicka-Rosińska, A., Rosiński, D. & Szczęśniak, E. Ophrys apifera Huds (Orchidaceae) on a heap of limestone mine waste – the first population found in the Sudetes and the second in Poland. Biodiversity Research and Conservation 59, 9–14. (2020).

    Article 

    Google Scholar 

  • Mattiasson, G. Om fyra nya Skånearter. Sven. Bot. Tidskr. 109, 340–345 (2015).

    Google Scholar 

  • Zimmermann, F. Verbreitung und gefährdungssituation der heimischen orchideen (orchidaceae) in Brandenburg Teil 3: Stark gefährdete, gefährdete und ungefährdete Arten sowie Arten mit unzureichender Datenlage. Naturschutz und Landschaftspflege in Brandenburg 20, 80–96 (2011).

    Google Scholar 

  • Lüdicke, T. Erstnachweis für Ophrys apifera Hudson in Brandenburg. Natursch. Landschaftspfl. Brbg. 16, 57–58 (2007).

    Google Scholar 

  • Zimmermann, F. Die Orchideen Brandenburgs – Verbreitung, Gefährdung. Schutz. Ber. Arbeitskrs. Heim. Orchid. 35, 4–147 (2018).

    Google Scholar 

  • Kullenberg, B. Studies in Ophrys pollination. Zool. Bidrag Fran Uppsala 34, 1–340 (1961).

    Google Scholar 

  • Kullenberg, B. & Bergström, G. Hymenoptera Aculeata males as pollinators of Ophrys orchids. Zoolog. Scr. 5, 13–23 (1976).

    Google Scholar 

  • Fenster, C. B. & Martén-Rodríguez, S. Reproductive assurance and the evolution of pollination specialization. Int. J. Plant Sci. 168, 215–228. (2007).

    Article 

    Google Scholar 

  • Darwin, C. Various Contrivances by Which Orchids Are Fertilized by Insects. (John Murray, 1877).

  • Claessens, J. & Kleynen, J. Investigations on the autogamy in Ophrys apifera Hudson. Jahresbericht des Naturwissenschaftlichen Vereins Wuppertal 55, 62–77 (2002).

    Google Scholar 

  • Mossberg, B. & Æ., P. H. Orkideer i Europa. (Gyldendal, 2017).

  • Kullenberg, B. Hymenoptera aculeata males as pollinators of Ophrys orchids. Zool. Scr. 5, 13–23 (1976).

    Google Scholar 

  • Claessens, J. & Kleynen, J. The Flower of the European Orchid: Form and Function (Self Published, 2011).

  • Ackerman, J. D. et al. Beyond the various contrivances by which orchids are pollinated: global patterns in orchid pollination biology. Bot. J. Linnean Soc. 2023, boac082. (2023).

  • Wells, T. C. E. & Cox, R. in Population ecology of terrestrial orchids (eds T. C. E. Wells & J. H. Willems) 47–61 (Academic Publishing, 1991).

  • Heinrich, W. & Dietrich, H. Heimische Orchideen in urbanen Biotopen. Feddes Repertorium 119, 388–432. (2008).

    Article 

    Google Scholar 

  • La Croix, I. The new encyclopedia of orchids : 1500 species in cultivation (Timber Press, 2008).

  • Pedersen, H. A. & Faurholdt, N. Ophrys: a guide to the bee orchids of Europe (Kew Publishing, 2007).

  • Harrap, A. & Harrap, S. Orchids of Britain and Ireland. 2nd ed. (A and C Black Publ. Ltd., 2009).

  • Summerhayes, V. S. Wild Orchids of Britain (Collins, 1951).

  • Doyle, J. J. & Doyle, J. L. A Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • Soliva, M., Kocyan, A. & Widmer, A. Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. Mol. Phylogenet. Evol. 20, 78–88. (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y., Skinner, D. Z., Liang, G. H. & Hulbert, S. H. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89, 26–32. (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cotrim, H. et al. Isolation and characterization of novel polymorphic nuclear microsatellite markers from Ophrys fusca (Orchidaceae) and cross-species amplification. Conserv. Genet. 10, 739–742. (2009).

    Article 
    CAS 

    Google Scholar 

  • Cotrim, H., Monteiro, F., Sousa, E., Pinto, M. J. & Fay, M. F. Marked hybridization and introgression in Ophrys sect Pseudophrys in the western Iberian Peninsula. Am. J. Bot. 103, 677–691. (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barton, N. H. & Slatkin, M. A Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56, 409–415. (1986).

    Article 
    PubMed 

    Google Scholar 

  • Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. (2008).

    Article 
    PubMed 

    Google Scholar 

  • Goudet, J. (2001).

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587. (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y.-L. & Liu, J.-X. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. (2004).

    Article 
    CAS 

    Google Scholar 

  • Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. U. S. A. 98, 4563–4568. (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326. (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273. (1979).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nei, M. Molecular evolutionary genetics (Columbia Univ, 1987).

    Google Scholar 

  • Eliades, N. G. & Eliades, D. G. Haplotype Analysis: Software for Analysis of Haplotypes Data. (Forest Genetics and Forest Tree Breeding, Georg-Augst University Goettingen, 2009).

  • Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Slatkin, M. Inbreeding coefficients and coalescence times. Genet. Res. 58, 167–175. (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. (2010).

    Article 
    PubMed 

    Google Scholar 

  • Liedloff A. C. Mantel Nonparametric Test Calculator. Version 2.0 (School of Natural Resource Sciences. Brisbane, QueenslandUniversity of Technology, 1999).

  • GBIF.org. The Global Biodiversity Information Facility (2023).

  • Tashev, A., Vitkova, A. & Russakova, V. Distribution of Ophrys apifera Huds (Orchidaceae) in Bulgaria. Flora Mediterranea 16, 247–252 (2006).

    Google Scholar 

  • Szatmari, P.-P. Ophrys apifera (Orchidaceae) in Transylvanian Flora, Romania. Acta Horti Bot. Bucurest. 43, 31–40 (2016).

    Google Scholar 

  • Anastasiu, P. New chorological data for rare vascular plants from Romania. Acta Horti Bot. Bucurest. 42, 57–62 (2015).

    Google Scholar 

  • Djordjević, V., Lakušić, D., Jovanović, S. & Stevanović, V. Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain. Wulfenia 24, 143–162 (2017).

    Google Scholar 

  • Luoto, M. & Heikkinen, R. K. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob. Change Biol. 14, 483–494. (2008).

    Article 
    ADS 

    Google Scholar 

  • Sorbe, F., Gränzig, T. & Förster, M. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Eco. Inform. 76, 102124. (2023).

    Article 

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. (2011).

    Article 

    Google Scholar 

  • Phillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. (2006).

    Article 

    Google Scholar 

  • Phillips, S. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. (2008).

    Article 
    ADS 

    Google Scholar 

  • Fick, S. & Hijmans, R. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. (2017).

    Article 

    Google Scholar 

  • Anderson, R. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393. (2010).

    Article 

    Google Scholar 

  • Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819. (2011).

    Article 

    Google Scholar 

  • Brown, J. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. (2014).

    Article 

    Google Scholar 

  • Brown, J. L., Bennett, J. R. & French, C. M. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGee, R., Williams, S., Poulton, R. & Moffitt, T. A longitudinal study of cannabis use and mental health from adolescence to early adulthood. Addiction 95, 491–503. (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605. (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 129, 1452. (2021).

    Article 
    CAS 

    Google Scholar 

  • Yukimoto, S. et al. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Japan. Ser. II 97, 931–965. (2019).

  • Parding, K. M. et al. GCMeval – an interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. (2020).

    Article 

    Google Scholar 

  • Owens, H. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18. (2013).

    Article 

    Google Scholar 

  • Mason, S. & Graham, N. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166. (2002).

    Article 
    ADS 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. (2006).

    Article 

    Google Scholar 

  • Kolanowska, M. Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections. Sci. Rep. 13, 15242. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains Pakistan. PLoS ONE 16, e0260031. (2022).

    Article 
    CAS 

    Google Scholar 

  • Pereyra, P. J. & Guiaşu, R. C. Debate over the importance and meaning of native range in invasion biology: reply to Courchamp et al. Conserv. Biol. 34, 1044-1046. (2020).

  • Carné, A., Vieites, D. R. & Sillero, N. Potential effects of climate change on the threatened Malagasy poison frogs: A multispecies approach. Ecosphere 16, e70315. (2025).

    Article 

    Google Scholar 

  • Baker, H. G. & Stebbins, G. L. The Genetics of Colonizing Species (Academic Press, 1965).

  • Hamrick, J. L. & Godt, M. J. W. in Plant Population Genetics, Breeding and Genetic Resources (eds A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir) 43–63 (Sinauer Press, 1989).

  • Charlesworth, B., Jordan, C. Y. & Charlesworth, D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution 68, 1339–1350. (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalisz, S. et al. The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). Am. J. Bot. 86, 1239–1247 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Cisternas-Fuentes, A., Forehand, C., Morris, K., Busch, J. W. & Koski, M. H. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. New Phytol. 245, 2268–2278. (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Charlesworth, D. Evolution of plant breeding systems. Curr. Biol. 16, R726-735. (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holsinger, K. E. The scope and the limits of conservation genetics. Evolution 50, 2558–2561. (1996).

    Article 

    Google Scholar 

  • Macnair, M. R., Macnair, V. E. & Martin, B. E. Adaptive speciation in Mimulus: an ecological comparison of M. cupriphilus with its presumed progenitor M. guttatus. New Phytol. 112, 269–279. (1989).

    Article 

    Google Scholar 

  • Squirrell, J., Hollingsworth, P. M., Bateman, R. M., Tebbitt, M. C. & Hollingsworth, M. L. Taxonomic complexity and breeding system transitions: conservation genetics of the Epipactis leptochila complex (Orchidaceae). Mol Ecol 11, 1957–1964. (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tałałaj, I., Ostrowiecka, B., Włostowska, E., Rutkowska, A. & Brzosko, E. The ability of spontaneous autogamy in four orchid species: Cephalanthera rubra, Neottia ovata, Gymnadenia conopsea, and Platanthera bifolia. Acta Biol. Cracov. Bot. 59, 51–61 (2017).

    Google Scholar 

  • Suetsugu, K. Delayed autonomous self-pollination in two Japanese varieties of Epipactis helleborine (Orchidaceae). Bot. J. Linn. Soc. 173, 733–743. (2013).

    Article 

    Google Scholar 

  • Ackerman, J. D. in Proceedings of the Eleventh World Orchid Conference. (ed K. Tan) 98–101 (Eleventh World Orchid Conference).

  • Catling, P. M. in Orchid Biology: Reviews and Perspectives (ed J. Arditti) 121–158 (Timber Press, 1990).

  • Jacquemyn, H., Micheneau, C., Roberts, D. L. & Pailler, T. Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J. Biogeogr. 32, 1751–1761. (2005).

    Article 

    Google Scholar 

  • Eckert, C. G. et al. Plant mating systems in a changing world. Trends Ecol. Evol. 25, 35–43. (2010).

    Article 
    PubMed 

    Google Scholar 

  • Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. Biol. Sci. 280, 20130133. (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheptou, P. O. Does the evolution of self-fertilization rescue populations or increase the risk of extinction?. Ann. Bot. 123, 337–345. (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rempicci, M. & Buono, S. Autogamia accidentale in Ophrys sphegodes subsp sphegodes. J.l Europäischer Orchideen 52, 349–354 (2020).

    Google Scholar 

  • Oikonomidis, S. et al. The effect of pollen origin (self- and cross-pollination) on seed production and viability in Ophrys (Orchidaceae). Bot. Lett. 171, 500–508. (2024).

    Article 

    Google Scholar 

  • Arditti, J. & Ghani, A. K. A. Tansley Review No. 110.: Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145, 367–421. (2000).

  • Molnár, V. A. Atlas of Hungarian orchids [in Hungarian] (Kossuth 2011).

  • Bateman, R. M. et al. Species arguments: clarifying competing concepts of species delimitation in the pseudo-copulatory orchid genus Ophrys. Bot. J. Linn. Soc. 165, 336–347. (2011).

    Article 

    Google Scholar 

  • Boss, I. & P. Caligari. Selection methods in plant. breeding. 2.ed. (Springer, Dordrecht, Netherlands, 2008)

  • Devey, D. S., Bateman, R. M., Fay, M. F. & Hawkins, J. A. Genetic structure and systematic relationships within the Ophrys fuciflora aggregate (Orchidaceae: Orchidinae): high diversity in Kent and a wind-induced discontinuity bisecting the Adriatic. Ann. Bot. 104, 483–495. (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jersáková, J. & Malinová, T. Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytol. 176, 237–241. (2007).

    Article 
    PubMed 

    Google Scholar 

  • Vandepitte, K. et al. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 21, 4206–4215. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soliva, M. & Widmer, A. Gene flow across species boundaries in sympatric, sexually deceptive Ophrys (Orchidaceae) species. Evolution 57, 2252–2261. (2003).

    Article 
    PubMed 

    Google Scholar 

  • Mant, J., Peakall, R. & Schiestl, F. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys?. Evolution 59, 1449–1463. (2005).

    Article 
    PubMed 

    Google Scholar 

  • Celary, W. & Flaga, S. Pszczoły dziko żyjące (Hymenoptera: Apoidea: Apiformes) – klucz do rozpoznawania rodzin i rodzajów pszczół wraz z ich charakterystyką (BioDar, 2024).

  • Forrest, A. D., Hollingsworth, M. L., Hollingsworth, P. M., Sydes, C. & Bateman, R. M. Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity (Edinb.) 92, 218–227. (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ziegenspeck, H. in Lebensgeschichte des Blütenpflanzen Mitteleuropas (eds O. Kirchner, W. Loew, & C. Schroeter) 1–840 ( Eugen Ulmer, 1936).

  • Anderson, J. & Song, B. H. Plant adaptation to climate change – Where are we?. J. Syst. Evol. 58, 533–545. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103. (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wesselmann, M., Apostolaki, E. & Anton, A. Species range shifts, biological invasions and ocean warming. Mar. Ecol. Progress Ser. (2024).

  • Lenoir, J. & Svenning. J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions.Ecography, 38(1), 15–28. (2015)

  • Rubenstein, M. A. et al. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. Environ. Evid. 12, 7. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanczuk, P. et al. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science 386, 193–198. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Charitonidou, M., Kougioumoutzis, K., Karypidou, M. C. & Halley, J. M. “Fly to a Safer North”: distributional shifts of the Orchid Ophrys insectifera L. due to climate change. Biol. Basel 11, 125. (2022).

    Article 

    Google Scholar 

  • Bosso, L. et al. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Eco. Inform. 79, 102402. (2024).

    Article 

    Google Scholar 

  • Bellis, J. et al. Identifying predictors of translocation success in rare plant species. Conserv. Biol. 38, e14190. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Seaton, P. T. & Pritchard, H. W. Orchid seed stores for sustainable use: a model for future seed-banking activities. Lankesteriana 11, 349–353 (2011).

    Google Scholar 

  • Reiter, N. et al. Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol. 217, 81–95. (2016).

    Article 

    Google Scholar 

  • Zhao, D. K., Mou, Z. M. & Ruan, Y. L. Orchids acquire fungal carbon for seed germination: pathways and players. Trends Plant Sci 29, 733–741. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolanowska, M. & Ruszkiewicz-Michalska, M. The long-term survival and climatic distribution of mixotrophic and mycoheterotrophic orchids. Acta Soc. Bot. Pol. 92, 1–16. (2023).

    Article 

    Google Scholar 

  • Bateman, R. M., Sramkó, G. & Paun, O. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Ann. Bot. 121, 85–105. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liebel, H. et al. C ad N stable isotope signatures reveal constraints to nutritional modes in orchids from the mediterranean and macaronesia. Am. J. Bot. 97, 903–912. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mennicken, S., Paula, C. C. P., Vogt-Schilb, H. & Jersáková, J. Diversity of mycorrhizal fungi in temperate orchid species: comparison of culture-dependent and culture-independent methods. J. Fungi Basel 10, 125 (2024).

    Google Scholar 

  • Kolanowska, M. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Sci. Rep. 13, 6848. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • QGIS Geographic Information System (QGIS Association, 2024).

  • ArcGIS Desktop Release 10.8.2 (nvironmental Systems Research Institute, Redlands, CA (2021).

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *