
Phylogenetic estimates of species-level phenology improve ecological forecasting
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al) (Cambridge Univ. Press, 2014).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).
Google Scholar
Dietze, M. Ecological Forecasting (Princeton Univ. Press, 2017).
Lewis, A. S. et al. The power of forecasts to advance ecological theory. Methods Ecol. Evol. 14, 746–756 (2023).
Google Scholar
Chuine, I. & Regniere, J. Process-based models of phenology for plants and animals. Annu. Rev. Ecol. Evol. Syst. 48, 159–182 (2017).
Google Scholar
Ettinger, A. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Change 10, 1137–1142 (2020).
Google Scholar
Moorcroft, P., Hurtt, G. & Pacala, S. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–585 (2001).
Google Scholar
Griffith, D. M. et al. Lineage-based functional types: characterising functional diversity to enhance the representation of ecological behaviour in land surface models. New Phytol. 228, 15–23 (2020).
Google Scholar
Fuccillo Battle, K. et al. Citizen science across two centuries reveals phenological change among plant species and functional groups in the northeastern US. J. Ecol. 110, 1757–1774 (2022).
Google Scholar
Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
Google Scholar
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
Google Scholar
Kochmer, J. P. & Handel, S. N. Constraints and competition in the evolution of flowering phenology. Ecol. Monogr. 56, 303–325 (1986).
Google Scholar
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008).
Google Scholar
Davies, T., Wolkovich, E., Kraft, N., Salamin, N. & Travers, S. E. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520–1530 (2013).
Google Scholar
CaraDonna, P. J. & Inouye, D. W. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community. Ecology 96, 355–361 (2014).
Google Scholar
Yang, Z. et al. Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan plateau. Agric. For. Meteorol. 304, 108413 (2021).
Google Scholar
Rafferty, N. E. & Nabity, P. D. A global test for phylogenetic signal in shifts in flowering time under climate change. J. Ecol. 105, 627–633 (2017).
Google Scholar
Larcher, W. Plant Physiological Ecology (Springer, 1980).
Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B 374, 20180178 (2019).
Google Scholar
Ackerly, D. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19699–19706 (2009).
Google Scholar
Davies, T. J., Regetz, J., Wolkovich, E. M. & McGill, B. J. Phylogenetically weighted regression: a method for modelling non-stationarity on evolutionary trees. Glob. Ecol. Biogeogr. 28, 275–285 (2019).
Google Scholar
Ettinger, A. K., Buonaiuto, D. M., Chamberlain, C. J., Morales-Castilla, I. & Wolkovich, E. M. Spatial and temporal shifts in photoperiod with climate change. New Phytol. 230, 462–474 (2021).
Google Scholar
Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).
Google Scholar
Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R. & McClain, C. R. The evolution of energetic scaling across the vertebrate tree of life. Am. Nat. 190, 185–199 (2017).
Google Scholar
Wolkovich, E. M. et al. Observed Spring Phenology Responses in Experimental Environments (OSPREE). Knowledge Network for Biocomplexity (2019).
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
Google Scholar
Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Change Biol. 20, 170–182 (2014).
Google Scholar
Wolkovich, E. M. & Donahue, M. J. How phenological tracking shapes species and communities in non-stationary environments. Biol. Rev. 96, 2810–2827 (2021).
Google Scholar
Nakagawa, H. et al. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor. Appl. Genet. 110, 778–786 (2005).
Google Scholar
Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81 (2012).
Google Scholar
Zohner, C. M., Benito, B. M., Svenning, J. C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).
Google Scholar
Hunter, A. F. & Lechowicz, M. J. Predicting the timing of budburst in temperate trees. J. Appl. Ecol. 29, 597–604 (1992).
Google Scholar
Schaber, J. & Badeck, F. Physiology-based phenology models for forest tree species in Germany. Int. J. Biometeorol. 47, 193–201 (2003).
Google Scholar
Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).
Google Scholar
Kramer, K. et al. Chilling and forcing requirements for foliage bud burst of European beech (Fagus sylvatica L.) differ between provenances and are phenotypically plastic. Agric. For. Meteorol. 234, 172–181 (2017).
Google Scholar
Aitken, S. N. & Bemmels, J. B. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290 (2016).
Google Scholar
Gotelli, N. J. & Graves, G. R. In Null Models in Ecology (eds Gotelli, N. J. & Graves, G. R.) 95–111 (Smithsonian Institution, 1996).
Grime, J. P. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).
Google Scholar
Serrano-Bueno, G., Romero-Campero, F. J., Lucas-Reina, E., Romero, J. M. & Valverde, F. Evolution of photoperiod sensing in plants and algae. Curr. Opin. Plant Biol. 37, 10–17 (2017).
Google Scholar
Rinne, P., Saarelainen, A. & Junttila, O. Growth cessation and bud dormancy in relation to ABA level in seedlings and coppice shoots of Betula pubescens as affected by a short photoperiod, water stress and chilling. Physiol. Plant. 90, 451–458 (1994).
Google Scholar
Wilczek, A. M., Cooper, M. D., Korves, T. M. & Schmitt, J. Lagging adaptation to warming climate in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 111, 7906–7913 (2014).
Google Scholar
Azeez, A. & Sane, A. P. Photoperiodic growth control in perennial trees. Plant Signal. Behav. 10, e1087631 (2015).
Google Scholar
Bennett, J. M. et al. The evolution of critical thermal limits of life on earth. Nat. Commun. 12, 1198 (2021).
Google Scholar
Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).
Google Scholar
Molina-Venegas, R. et al. Assessing among-lineage variability in phylogenetic imputation of functional trait datasets. Ecography 41, 1740–1749 (2018).
Google Scholar
Molina-Venegas, R., Morales-Castilla, I. & Rodríguez, M. Á. Unreliable prediction of B-vitamin source species. Nat. Plants 9, 31–33 (2023).
Google Scholar
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. 123, 9391–9409 (2018).
Google Scholar
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
Google Scholar
Baumgarten, F., Zohner, C. M., Gessler, A. & Vitasse, Y. Chilled to be forced: the best dose to wake up buds from winter dormancy. New Phytol. 230, 1366–1377 (2021).
Google Scholar
Buonaiuto, D. M., Donahue, M. & Wolkovich, E. M. Experimental designs for testing the interactive effects of temperature and light in ecology: the problem of periodicity. Funct. Ecol. 37, 1747–1756 (2023).
Google Scholar
Pearse, W. D. et al. Pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).
Google Scholar
Morales-Castilla, I. MoralesCastilla/PhenoPhyloMM: initial release. Zenodo (2024).