Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change
admin April 13, 2025

Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change

  • Brodie, J. F. & Watson, J. E. M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl Acad. Sci. 120, e2205512120 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    ADS 
    PubMed 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed 

    Google Scholar 

  • Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Chang. Biol. 25, 1561–1575 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).

    PubMed 

    Google Scholar 

  • Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).

    PubMed 

    Google Scholar 

  • Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. Usa. 116, 10418–10423 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buechley, E. R. et al. Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off. J. Anim. Ecol. 90, 1228–1238 (2021).

    PubMed 

    Google Scholar 

  • Newton, I. The migration ecology of birds. (Academic Press, 2008).

  • Shaw, T. A. et al. Regional climate change: consensus, discrepancies, and ways forward. Front. Clim. 6, 1391634 (2024).

    Google Scholar 

  • Thorup, K. et al. Response of an Afro-Palearctic bird migrant to glaciation cycles. Proc. Natl. Acad. Sci. USA. 118, e2023836118 (2021).

  • Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 2, 173–179 (1992).

    Google Scholar 

  • Dufour, P. et al. A new westward migration route in an Asian passerine bird. Curr. Biol. 31, 5590–5596.e4 (2021).

    PubMed 

    Google Scholar 

  • Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).

    Google Scholar 

  • Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romano, A., Garamszegi, L. Z., Rubolini, D. & Ambrosini, R. Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: a global meta‐analysis. Ecol. Monogr. 93, e1552 (2023).

  • Bairlein, F. Migratory birds under threat. Science 354, 547–548 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Google Scholar 

  • Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

    Google Scholar 

  • Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Howard, C. et al. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. Biol. Sci. 285, 20172329 (2018).

  • Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. Usa. 105, 16195–16200 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. Biol. Sci. 278, 835–842 (2011).

    PubMed 

    Google Scholar 

  • Christie, D. A. & Ferguson-Lees, J. Raptors of the World. (Bloomsbury Publishing, 2010).

  • Iñigo, A. & Barov, B. Action plan for the lesser kestrel Falco naumanni in the European Union. Madrid: SEO‐BirdLife and BirdLife International for the European Commission. Madrid: SEO‐BirdLife and BirdLife International for the European Commission (2010).

  • Morganti, M., Preatoni, D. & Sarà, M. Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. J. Avian Biol. 48, 1595–1607 (2017).

    Google Scholar 

  • BirdLife International. Species factsheet: Falco naumanni. (2024).

  • Bounas, A. et al. Genetic structure of a patchily distributed philopatric migrant: implications for management and conservation. Biol. J. Linn. Soc. Lond. 124, 633–644 (2018).

    Google Scholar 

  • Negro, J. J., Prenda, J., Ferrero, J. J., Rodríguez, A. & Reig-Ferrer, A. A timeline for the urbanization of wild birds: the case of the lesser kestrel. Quat. Sci. Rev. 249, 106638 (2020).

    Google Scholar 

  • Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).

    PubMed 

    Google Scholar 

  • Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    PubMed 

    Google Scholar 

  • Turbek, S. P., Funk, W. C. & Ruegg, K. C. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J. Hered. 114, 300–311 (2023).

    PubMed 

    Google Scholar 

  • Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delmore, K. E. et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol. Ecol. 24, 1873–1888 (2015).

    PubMed 

    Google Scholar 

  • Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Sønstebø, J. H. et al. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).

    PubMed 

    Google Scholar 

  • Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

    Google Scholar 

  • Rodríguez, A., Alcaide, M., Negro, J. J. & Pilard, P. Using major histocompatibility complex markers to assign the geographic origin of migratory birds: examples from the threatened lesser kestrel. Anim. Conserv. 14, 306–313 (2011).

    Google Scholar 

  • Wink, M., Sauer-Gürth, H. & Pepler, D. Phylogeographic relationships of the Lesser Kestrel (Falco naumanni) in breeding and wintering quarters inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Wink, M; Sauer-Gürth, H; Pepler, D; in Raptors Worldwide (eds. Chancellor, R. D. & Meyburg, B. U.) 505–510 (WWGBP, Berlin, 2004).

  • Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

    PubMed 

    Google Scholar 

  • Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).

    PubMed 

    Google Scholar 

  • McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).

    PubMed 

    Google Scholar 

  • Mérot, C., Oomen, R. A., Tigano, A. & Wellenreuther, M. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35, 561–572 (2020).

    PubMed 

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).

    ADS 

    Google Scholar 

  • Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671(2016).

  • Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369, eabc5654 (2020).

  • Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).

    PubMed 

    Google Scholar 

  • Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS 
    PubMed 

    Google Scholar 

  • Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).

    PubMed 

    Google Scholar 

  • Pârâu, L. G. & Wink, M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. J. Ornithol. 162, 937–959 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Claussen, M., Dallmeyer, A. & Bader, J. Theory and modeling of the African humid period and the green Sahara. in Oxford Research Encyclopedia Of Climate Science (2017).

  • Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA. 105, 11597–11604 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).

    PubMed 

    Google Scholar 

  • Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).

    Google Scholar 

  • Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol. Conserv. 80, 153–160 (1997).

    Google Scholar 

  • Morganti, M. et al. Assessing the relative importance of managed crops and semi-natural grasslands as foraging habitats for breeding lesser kestrels Falco naumanni in southeastern Italy. Wildl. Biol. 2021, 1–10 (2021).

    Google Scholar 

  • Parr, S. J. et al. A baseline survey of Lesser Kestrel Falco naumanni in south-east Kazakhstan, April-may 1997. Sandgrouse 22, 36–43 (2000).

    Google Scholar 

  • Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).

    PubMed 

    Google Scholar 

  • Ahrens, C. W., Rymer, P. D. & Miller, A. D. Genetic offset and vulnerability modelling: misinterpretations of results and violations of evolutionary principles. Authorea Preprints (2023).

  • Rellstab, C. Genomics helps to predict maladaptation to climate change. Nat. Clim. Chang. 11, 85–86 (2021).

    ADS 

    Google Scholar 

  • Negro, J. J. & De La Riva, M. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 2 (1991).

    Google Scholar 

  • Bustamante, J. Cernícalo primilla (Falco naumanni). in SEO/BirdLife: Atlas de las aves en invierno en España 2007-2010 36–47 (Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife. Madrid, 2012).

  • Brooks, M. et al. The African Bird Atlas Project: a description of the project and BirdMap data-collection protocol. Ostrich 93, 223–232 (2022).

    Google Scholar 

  • Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 13, 282–289 (2023).

    ADS 

    Google Scholar 

  • Owens, G. L. & Samuk, K. Adaptive introgression during environmental change can weaken reproductive isolation. Nat. Clim. Chang. 10, 58–62 (2019).

    ADS 

    Google Scholar 

  • Corregidor-Castro, A. et al. Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey. Glob. Chang. Biol. 29, 5552–5567 (2023).

    PubMed 

    Google Scholar 

  • Catry, I., Amano, T., Franco, A. M. A. & Sutherland, W. J. Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel: Farmland management and lesser kestrel breeding success. J. Appl. Ecol. 49, 99–108 (2012).

    Google Scholar 

  • Zwarts, L., Bijlsma, R. G. & van der Kamp, J. The fortunes of migratory birds from Eurasia: Being on a tightrope in the Sahel. Ardea 111, 397–437 (2023).

    Google Scholar 

  • Mihoub, J.-B., Gimenez, O., Pilard, P. & Sarrazin, F. Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable Lesser Kestrel Falco naumanni. Biol. Conserv. 143, 839–847 (2010).

    Google Scholar 

  • Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61, 300–314 (2019).

    Google Scholar 

  • Catry, I., Catry, T., Patto, P., Franco, A. M. A. & Moreira, F. Differential heat tolerance in nestlings suggests sympatric species may face different climate change risks. Clim. Res. 66, 13–24 (2015).

    Google Scholar 

  • Marcelino, J. et al. Extreme events are more likely to affect the breeding success of lesser kestrels than average climate change. Sci. Rep. 10, 7207 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).

    Google Scholar 

  • Corregidor-Castro, A. et al. Temperature-related developmental plasticity, not selection, affects offspring body size and shape in a bird of prey. EcoEvoRxiv (2024).

    Article 

    Google Scholar 

  • Aparicio, J. M., Muñoz, A., Cordero, P. J. & Bonal, R. Causes of the recent decline of a Lesser Kestrel (Falco naumanni) population under an enhanced conservation scenario. Ibis 165, 388–402 (2022).

    Google Scholar 

  • Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    Google Scholar 

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lombardo, G. et al. The mitogenome relationships and phylogeography of barn swallows (Hirundo rustica). Mol. Biol. Evol. 39, msac113 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, Y. S. et al. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol. 20, 181 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cramp, S. et al. The Complete Birds of the Western Palearctic on CD-ROM. (Oxford University Press, Oxford, England, 1998).

  • Berlusconi, A. et al. Intra-guild spatial niche overlap among three small falcon species in an area of recent sympatry. Eur. Zool. J. 89, 510–526 (2022).

    Google Scholar 

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • Boucher-Lalonde, V., Morin, A. & Currie, D. J. A consistent occupancy-climate relationship across birds and mammals of the Americas. Oikos 123, 1029–1036 (2014).

    ADS 

    Google Scholar 

  • Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. Usa. 105, 17836–17841 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. W. & Afanasyev, V. Geolocators map the wintering grounds of threatened Lesser Kestrels in Africa. Divers. Distrib. 15, 1010–1016 (2009).

    Google Scholar 

  • Sarà, M. et al. Broad‐front migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).

    Google Scholar 

  • Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package ‘phuassess’ for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).

    Google Scholar 

  • Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  • Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27, 2215–2233 (2018).

    PubMed 

    Google Scholar 

  • Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).

    PubMed 

    Google Scholar 

  • Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

    PubMed 

    Google Scholar 

  • Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    PubMed 

    Google Scholar 

  • Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Capblancq, T., Lachmuth, S., Fitzpatrick, M. C. & Keller, S. R. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. N. Phytol. 237, 1590–1605 (2022).

    Google Scholar 

  • Gain, C. et al. A quantitative theory for genomic offset statistics. Mol. Biol. Evol. 40, msad140 (2023).

  • Capblancq, T. & Forester, B. R. Redundancy analysis: a swiss army knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).

    Google Scholar 

  • Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. 33, 783–796 (2020).

    PubMed 

    Google Scholar 

  • Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J. Anim. Ecol. 72, 793–810 (2003).

    Google Scholar 

  • Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013).

    PubMed 

    Google Scholar 

  • Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *