
Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change
Brodie, J. F. & Watson, J. E. M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl Acad. Sci. 120, e2205512120 (2023).
Google Scholar
Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
Google Scholar
Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Chang. Biol. 25, 1561–1575 (2019).
Google Scholar
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
Google Scholar
Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).
Google Scholar
Hällfors, M. H. et al. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecol. Appl. 26, 1154–1169 (2016).
Google Scholar
Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. Usa. 116, 10418–10423 (2019).
Google Scholar
Buechley, E. R. et al. Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off. J. Anim. Ecol. 90, 1228–1238 (2021).
Google Scholar
Newton, I. The migration ecology of birds. (Academic Press, 2008).
Shaw, T. A. et al. Regional climate change: consensus, discrepancies, and ways forward. Front. Clim. 6, 1391634 (2024).
Thorup, K. et al. Response of an Afro-Palearctic bird migrant to glaciation cycles. Proc. Natl. Acad. Sci. USA. 118, e2023836118 (2021).
Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 2, 173–179 (1992).
Dufour, P. et al. A new westward migration route in an Asian passerine bird. Curr. Biol. 31, 5590–5596.e4 (2021).
Google Scholar
Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).
Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).
Google Scholar
Romano, A., Garamszegi, L. Z., Rubolini, D. & Ambrosini, R. Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: a global meta‐analysis. Ecol. Monogr. 93, e1552 (2023).
Bairlein, F. Migratory birds under threat. Science 354, 547–548 (2016).
Google Scholar
Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).
Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
Google Scholar
Howard, C. et al. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. Biol. Sci. 285, 20172329 (2018).
Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. Usa. 105, 16195–16200 (2008).
Google Scholar
Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. Biol. Sci. 278, 835–842 (2011).
Google Scholar
Christie, D. A. & Ferguson-Lees, J. Raptors of the World. (Bloomsbury Publishing, 2010).
Iñigo, A. & Barov, B. Action plan for the lesser kestrel Falco naumanni in the European Union. Madrid: SEO‐BirdLife and BirdLife International for the European Commission. Madrid: SEO‐BirdLife and BirdLife International for the European Commission (2010).
Morganti, M., Preatoni, D. & Sarà, M. Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. J. Avian Biol. 48, 1595–1607 (2017).
BirdLife International. Species factsheet: Falco naumanni. (2024).
Bounas, A. et al. Genetic structure of a patchily distributed philopatric migrant: implications for management and conservation. Biol. J. Linn. Soc. Lond. 124, 633–644 (2018).
Negro, J. J., Prenda, J., Ferrero, J. J., Rodríguez, A. & Reig-Ferrer, A. A timeline for the urbanization of wild birds: the case of the lesser kestrel. Quat. Sci. Rev. 249, 106638 (2020).
Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
Google Scholar
Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).
Google Scholar
Turbek, S. P., Funk, W. C. & Ruegg, K. C. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J. Hered. 114, 300–311 (2023).
Google Scholar
Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
Google Scholar
Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun. 13, 4821 (2022).
Google Scholar
Delmore, K. E. et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol. Ecol. 24, 1873–1888 (2015).
Google Scholar
Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).
Google Scholar
Sønstebø, J. H. et al. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).
Google Scholar
Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).
Rodríguez, A., Alcaide, M., Negro, J. J. & Pilard, P. Using major histocompatibility complex markers to assign the geographic origin of migratory birds: examples from the threatened lesser kestrel. Anim. Conserv. 14, 306–313 (2011).
Wink, M., Sauer-Gürth, H. & Pepler, D. Phylogeographic relationships of the Lesser Kestrel (Falco naumanni) in breeding and wintering quarters inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Wink, M; Sauer-Gürth, H; Pepler, D; in Raptors Worldwide (eds. Chancellor, R. D. & Meyburg, B. U.) 505–510 (WWGBP, Berlin, 2004).
Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
Google Scholar
Catchen, J. M. et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol. Ecol. Resour. 17, 362–365 (2017).
Google Scholar
McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).
Google Scholar
Mérot, C., Oomen, R. A., Tigano, A. & Wellenreuther, M. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35, 561–572 (2020).
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).
Google Scholar
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671(2016).
Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369, eabc5654 (2020).
Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).
Google Scholar
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).
Google Scholar
Pârâu, L. G. & Wink, M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. J. Ornithol. 162, 937–959 (2021).
Google Scholar
Claussen, M., Dallmeyer, A. & Bader, J. Theory and modeling of the African humid period and the green Sahara. in Oxford Research Encyclopedia Of Climate Science (2017).
Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA. 105, 11597–11604 (2008).
Google Scholar
Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
Google Scholar
Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).
Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol. Conserv. 80, 153–160 (1997).
Morganti, M. et al. Assessing the relative importance of managed crops and semi-natural grasslands as foraging habitats for breeding lesser kestrels Falco naumanni in southeastern Italy. Wildl. Biol. 2021, 1–10 (2021).
Parr, S. J. et al. A baseline survey of Lesser Kestrel Falco naumanni in south-east Kazakhstan, April-may 1997. Sandgrouse 22, 36–43 (2000).
Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).
Google Scholar
Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).
Google Scholar
Ahrens, C. W., Rymer, P. D. & Miller, A. D. Genetic offset and vulnerability modelling: misinterpretations of results and violations of evolutionary principles. Authorea Preprints (2023).
Rellstab, C. Genomics helps to predict maladaptation to climate change. Nat. Clim. Chang. 11, 85–86 (2021).
Google Scholar
Negro, J. J. & De La Riva, M. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 2 (1991).
Bustamante, J. Cernícalo primilla (Falco naumanni). in SEO/BirdLife: Atlas de las aves en invierno en España 2007-2010 36–47 (Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife. Madrid, 2012).
Brooks, M. et al. The African Bird Atlas Project: a description of the project and BirdMap data-collection protocol. Ostrich 93, 223–232 (2022).
Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Chang. 13, 282–289 (2023).
Google Scholar
Owens, G. L. & Samuk, K. Adaptive introgression during environmental change can weaken reproductive isolation. Nat. Clim. Chang. 10, 58–62 (2019).
Google Scholar
Corregidor-Castro, A. et al. Experimental nest cooling reveals dramatic effects of heatwaves on reproduction in a Mediterranean bird of prey. Glob. Chang. Biol. 29, 5552–5567 (2023).
Google Scholar
Catry, I., Amano, T., Franco, A. M. A. & Sutherland, W. J. Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel: Farmland management and lesser kestrel breeding success. J. Appl. Ecol. 49, 99–108 (2012).
Zwarts, L., Bijlsma, R. G. & van der Kamp, J. The fortunes of migratory birds from Eurasia: Being on a tightrope in the Sahel. Ardea 111, 397–437 (2023).
Mihoub, J.-B., Gimenez, O., Pilard, P. & Sarrazin, F. Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable Lesser Kestrel Falco naumanni. Biol. Conserv. 143, 839–847 (2010).
Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61, 300–314 (2019).
Catry, I., Catry, T., Patto, P., Franco, A. M. A. & Moreira, F. Differential heat tolerance in nestlings suggests sympatric species may face different climate change risks. Clim. Res. 66, 13–24 (2015).
Marcelino, J. et al. Extreme events are more likely to affect the breeding success of lesser kestrels than average climate change. Sci. Rep. 10, 7207 (2020).
Google Scholar
Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).
Corregidor-Castro, A. et al. Temperature-related developmental plasticity, not selection, affects offspring body size and shape in a bird of prey. EcoEvoRxiv (2024).
Google Scholar
Aparicio, J. M., Muñoz, A., Cordero, P. J. & Bonal, R. Causes of the recent decline of a Lesser Kestrel (Falco naumanni) population under an enhanced conservation scenario. Ibis 165, 388–402 (2022).
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
Google Scholar
Lombardo, G. et al. The mitogenome relationships and phylogeography of barn swallows (Hirundo rustica). Mol. Biol. Evol. 39, msac113 (2022).
Google Scholar
Cho, Y. S. et al. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol. 20, 181 (2019).
Google Scholar
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
Google Scholar
Cramp, S. et al. The Complete Birds of the Western Palearctic on CD-ROM. (Oxford University Press, Oxford, England, 1998).
Berlusconi, A. et al. Intra-guild spatial niche overlap among three small falcon species in an area of recent sympatry. Eur. Zool. J. 89, 510–526 (2022).
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Boucher-Lalonde, V., Morin, A. & Currie, D. J. A consistent occupancy-climate relationship across birds and mammals of the Americas. Oikos 123, 1029–1036 (2014).
Google Scholar
Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. Usa. 105, 17836–17841 (2008).
Google Scholar
Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. W. & Afanasyev, V. Geolocators map the wintering grounds of threatened Lesser Kestrels in Africa. Divers. Distrib. 15, 1010–1016 (2009).
Sarà, M. et al. Broad‐front migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).
Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package ‘phuassess’ for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27, 2215–2233 (2018).
Google Scholar
Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
Google Scholar
Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).
Google Scholar
Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
Google Scholar
Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).
Google Scholar
Capblancq, T., Lachmuth, S., Fitzpatrick, M. C. & Keller, S. R. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. N. Phytol. 237, 1590–1605 (2022).
Gain, C. et al. A quantitative theory for genomic offset statistics. Mol. Biol. Evol. 40, msad140 (2023).
Capblancq, T. & Forester, B. R. Redundancy analysis: a swiss army knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).
Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. 33, 783–796 (2020).
Google Scholar
Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J. Anim. Ecol. 72, 793–810 (2003).
Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013).
Google Scholar
Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).
Google Scholar