
Cost-effective adaptations increase rice production while reducing pollution under climate change
Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).
Google Scholar
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.Front
Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).
Google Scholar
Ma, R. et al. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Chang. Biol. 28, 1008–1022 (2022).
Google Scholar
Kritee, K. et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl Acad. Sci. USA 115, 9720–9725 (2018).
Google Scholar
Zhao, C. et al. Plausible rice yield losses under future climate warming. Nat. Plants 3, 16202 (2017).
Google Scholar
Lobell, D. B., Tommaso, S., Di & Burney, J. A. Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Sci. Adv. (2022).
Chen, X. P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).
Google Scholar
Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).
Google Scholar
Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophy. Res. Atmos. (2006).
Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).
Google Scholar
Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).
Google Scholar
Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).
Google Scholar
Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).
Google Scholar
Cui, J. et al. Nitrogen cycles in global croplands altered by elevated CO2. Nat. Sustain. (2023).
Google Scholar
Hoogenboom, G. et al. Decision Support System for Agrotechnology Transfer (DSSAT). (DSSAT Foundation, 2023).
Wang, B. et al. Sources of uncertainty for wheat yield projections under future climate are site-specific. Nat. Food 1, 720–728 (2020).
Google Scholar
Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Chang. Biol. 21, 1328–1341 (2015).
Google Scholar
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
Google Scholar
Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).
Google Scholar
Qian, H. et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 4, 716–732 (2023).
Google Scholar
Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. (2022).
Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).
Google Scholar
FAOSTAT (FAO, 2024); https://www.fao.org/faostat/en/#data
Fu, J. et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat. Food (2023).
Google Scholar
Lobell, D. B. & Gourdji, S. M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012).
Google Scholar
Murchie, E. H., Hubbart, S., Chen, Y., Peng, S. & Horton, P. Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol. 130, 1999–2010 (2002).
Google Scholar
Matthews, R. B., Wassmann, R. & Arah, J. Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development. Nutr. Cycl. Agroecosyst. 58, 141–159 (2000).
Google Scholar
Jat, H. S. & Jat, R. K. Resource Conserving Technologies in South Asia: Frequently Asked Questions (CIMMYT, 2010); https://repository.cimmyt.org/server/api/core/bitstreams/48bb5b62-22ed-4fd0-bb2a-25401d40d4c5/content
Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A. & Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 13, 7079 (2022).
Google Scholar
Gu, B. et al. A credit system to solve agricultural nitrogen pollution. Innovation 2, 100079 (2021).
Google Scholar
Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).
Google Scholar
Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).
Google Scholar
Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. Inequality, climate impacts on the future poor, and carbon prices. Proc. Natl Acad. Sci. USA 112, 15827–15832 (2015).
Google Scholar
The Sustainable Development Goals Report 2019 (UN, 2019); https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf
Peng, B. et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6, 338–348 (2020).
Google Scholar
Franke, J. A. et al. The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosci. Model Dev. 13, 2315–2336 (2020).
Google Scholar
Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).
Google Scholar
Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
Google Scholar
Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).
Google Scholar
Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).
Google Scholar
Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112 (2011).
Google Scholar
Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).
Google Scholar
Jiang, Z. et al. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: insights into microbial diversity. J. Clean. Prod. 318, 128595 (2021).
Google Scholar
Giri, S., Nejadhashemi, A. P. & Woznicki, S. A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J. Environ. Manage. 103, 24–40 (2012).
Google Scholar
Schönhart, M., Penker, M. & Schmid, E. Sustainable local food production and consumption: challenges for implementation and research. Outlook Agric. 38, 175–182 (2009).
Google Scholar
Ren, C. et al. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96–103 (2023).
Google Scholar
Wuepper, D., Le Clech, S., Zilberman, D., Mueller, N. & Finger, R. Countries influence the trade-off between crop yields and nitrogen pollution. Nat. Food 1, 713–719 (2020).
Google Scholar
Venkatramanan, V., Shah, S. & Prasad, R. Global Climate Change and Environmental Policy: Agriculture Perspectives (Springer, 2019); https://doi.org/10.1007/978-981-13-9570-3
Behera, S. K. & Panda, R. K. Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling. Agric. Water Manage. 96, 1532–1540 (2009).
Google Scholar
International Food Policy Research Institute (IFPRI) Global spatially-disaggregated crop production statistics data for 2020 version 1.0. Harvard Dataverse (2024).
Singh, U., Ritchie, J. T. & Godwin, D. C. A User’s Guide to CERES Rice—v2.10 (International Fertilizer Development Center, 1993).
Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. Cereal growth, development and yield. Understanding Options for Agriculturual Production (Tsuji, G. Y. et al.) 79–98 (Springer, 1998); https://doi.org/10.1007/978-94-017-3624-4_5
Büchner, S. L. M. ISIMIP3b bias-adjusted atmospheric climate input data (v1.1). ISIMIP Repository (2021).
Han, E., Ines, A. & Koo, J. Global high-resolution soil profile database for crop modeling applications. International Research Institute for Climate and Society (IRI, 2015).
Gu, J. & Yang, J. Nitrogen (N) transformation in paddy rice field: its effect on N uptake and relation to improved N management. Crop Environ. 1, 7–14 (2022).
Google Scholar
Siebert, S., Döll, P., Feick, S., Frenken, K. & Hoogeveen, J. Global Map of Irrigation Areas Version 5 (Univ. Frankfurt and FAO, 2013).
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Google Scholar
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).
Google Scholar
Yu, Q. et al. A cultivated planet in 2010—part 2: the global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020).
Google Scholar
Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).
Google Scholar
Stavert, A. R. et al. Regional trends and drivers of the global methane budget. Glob. Change Biol. 28, 182–200 (2022).
Google Scholar
Editorial Team. Water prices compared in 36 EU-cities. Water News Europe (19 March 2021); https://www.waternewseurope.com/water-prices-compared-in-36-eu-cities/
United Nations Environment Programme. United Nations Environment Programme and Climate and Clean Air Coalition Summary for Decision Makers—Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions (UN, 2021).
Milligan, C., Kopp, A., Dahdah, S. & Montufar, J. Value of a statistical life in road safety: a benefit-transfer function with risk-analysis guidance based on developing country data. Accid. Anal. Prev. 71, 236–247 (2014).
Google Scholar
Bittman, S., Brook, J. R., Bleeker, A. & Bruulsema T. W. in Air Quality Management: Canadian Perspectives on a Global Issue (ed. Taylor, E. & McMillan, A.) 261–277 (Springer, 2014); https://doi.org/10.1007/978-94-007-7557-2_12
Van Grinsven, H. J. M. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).
Google Scholar
Pinder, R. W. et al. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry 114, 25–40 (2013).
Google Scholar
Edwards, W. Estimating Farm Machinery Costs (Iowa State University, 2015); https://www.extension.iastate.edu/agdm/crops/html/a3-29.html
Bevir, M. World Developmet Indicators. In Encyclopedia of Governance Vol. 2 1024–1025 (SAGE, 2007); https://doi.org/10.4135/9781412952613
Klimont, Z. & Winiwarter, W. Integrated Ammonia Abatement—Modelling of Emission Control Potentials and Costs in Gains. (International Institute for Applied Systems Analysis (IIASA), 2011).