Cost-effective adaptations increase rice production while reducing pollution under climate change
admin January 22, 2025

Cost-effective adaptations increase rice production while reducing pollution under climate change

  • Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.Front

  • Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ma, R. et al. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Chang. Biol. 28, 1008–1022 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kritee, K. et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl Acad. Sci. USA 115, 9720–9725 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhao, C. et al. Plausible rice yield losses under future climate warming. Nat. Plants 3, 16202 (2017).

    Article 

    Google Scholar 

  • Lobell, D. B., Tommaso, S., Di & Burney, J. A. Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Sci. Adv. (2022).

  • Chen, X. P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophy. Res. Atmos. (2006).

  • Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Trnka, M. et al. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article 
    MATH 

    Google Scholar 

  • Cui, J. et al. Nitrogen cycles in global croplands altered by elevated CO2. Nat. Sustain. (2023).

    Article 
    MATH 

    Google Scholar 

  • Hoogenboom, G. et al. Decision Support System for Agrotechnology Transfer (DSSAT). (DSSAT Foundation, 2023).

  • Wang, B. et al. Sources of uncertainty for wheat yield projections under future climate are site-specific. Nat. Food 1, 720–728 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Chang. Biol. 21, 1328–1341 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Qian, H. et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 4, 716–732 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. (2022).

  • Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).

    Article 
    MATH 

    Google Scholar 

  • FAOSTAT (FAO, 2024); https://www.fao.org/faostat/en/#data

  • Fu, J. et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat. Food (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lobell, D. B. & Gourdji, S. M. The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Murchie, E. H., Hubbart, S., Chen, Y., Peng, S. & Horton, P. Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol. 130, 1999–2010 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matthews, R. B., Wassmann, R. & Arah, J. Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I. Model development. Nutr. Cycl. Agroecosyst. 58, 141–159 (2000).

    Article 
    CAS 

    Google Scholar 

  • Jat, H. S. & Jat, R. K. Resource Conserving Technologies in South Asia: Frequently Asked Questions (CIMMYT, 2010); https://repository.cimmyt.org/server/api/core/bitstreams/48bb5b62-22ed-4fd0-bb2a-25401d40d4c5/content

  • Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A. & Müller, C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 13, 7079 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, B. et al. A credit system to solve agricultural nitrogen pollution. Innovation 2, 100079 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. Inequality, climate impacts on the future poor, and carbon prices. Proc. Natl Acad. Sci. USA 112, 15827–15832 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Sustainable Development Goals Report 2019 (UN, 2019); https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf

  • Peng, B. et al. Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6, 338–348 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Franke, J. A. et al. The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosci. Model Dev. 13, 2315–2336 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olesen, J. E. et al. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112 (2011).

    Article 
    MATH 

    Google Scholar 

  • Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).

    Article 
    ADS 

    Google Scholar 

  • Jiang, Z. et al. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: insights into microbial diversity. J. Clean. Prod. 318, 128595 (2021).

    Article 
    CAS 

    Google Scholar 

  • Giri, S., Nejadhashemi, A. P. & Woznicki, S. A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J. Environ. Manage. 103, 24–40 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schönhart, M., Penker, M. & Schmid, E. Sustainable local food production and consumption: challenges for implementation and research. Outlook Agric. 38, 175–182 (2009).

    Article 
    MATH 

    Google Scholar 

  • Ren, C. et al. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96–103 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wuepper, D., Le Clech, S., Zilberman, D., Mueller, N. & Finger, R. Countries influence the trade-off between crop yields and nitrogen pollution. Nat. Food 1, 713–719 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venkatramanan, V., Shah, S. & Prasad, R. Global Climate Change and Environmental Policy: Agriculture Perspectives (Springer, 2019); https://doi.org/10.1007/978-981-13-9570-3

  • Behera, S. K. & Panda, R. K. Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling. Agric. Water Manage. 96, 1532–1540 (2009).

    Article 
    MATH 

    Google Scholar 

  • International Food Policy Research Institute (IFPRI) Global spatially-disaggregated crop production statistics data for 2020 version 1.0. Harvard Dataverse (2024).

  • Singh, U., Ritchie, J. T. & Godwin, D. C. A User’s Guide to CERES Rice—v2.10 (International Fertilizer Development Center, 1993).

  • Ritchie, J. T., Singh, U., Godwin, D. C. & Bowen, W. T. Cereal growth, development and yield. Understanding Options for Agriculturual Production (Tsuji, G. Y. et al.) 79–98 (Springer, 1998); https://doi.org/10.1007/978-94-017-3624-4_5

  • Büchner, S. L. M. ISIMIP3b bias-adjusted atmospheric climate input data (v1.1). ISIMIP Repository (2021).

  • Han, E., Ines, A. & Koo, J. Global high-resolution soil profile database for crop modeling applications. International Research Institute for Climate and Society (IRI, 2015).

  • Gu, J. & Yang, J. Nitrogen (N) transformation in paddy rice field: its effect on N uptake and relation to improved N management. Crop Environ. 1, 7–14 (2022).

    Article 
    MATH 

    Google Scholar 

  • Siebert, S., Döll, P., Feick, S., Frenken, K. & Hoogeveen, J. Global Map of Irrigation Areas Version 5 (Univ. Frankfurt and FAO, 2013).

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Yu, Q. et al. A cultivated planet in 2010—part 2: the global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Stavert, A. R. et al. Regional trends and drivers of the global methane budget. Glob. Change Biol. 28, 182–200 (2022).

    Article 
    MATH 

    Google Scholar 

  • Editorial Team. Water prices compared in 36 EU-cities. Water News Europe (19 March 2021); https://www.waternewseurope.com/water-prices-compared-in-36-eu-cities/

  • United Nations Environment Programme. United Nations Environment Programme and Climate and Clean Air Coalition Summary for Decision Makers—Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions (UN, 2021).

  • Milligan, C., Kopp, A., Dahdah, S. & Montufar, J. Value of a statistical life in road safety: a benefit-transfer function with risk-analysis guidance based on developing country data. Accid. Anal. Prev. 71, 236–247 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bittman, S., Brook, J. R., Bleeker, A. & Bruulsema T. W. in Air Quality Management: Canadian Perspectives on a Global Issue (ed. Taylor, E. & McMillan, A.) 261–277 (Springer, 2014); https://doi.org/10.1007/978-94-007-7557-2_12

  • Van Grinsven, H. J. M. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Pinder, R. W. et al. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry 114, 25–40 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Edwards, W. Estimating Farm Machinery Costs (Iowa State University, 2015); https://www.extension.iastate.edu/agdm/crops/html/a3-29.html

  • Bevir, M. World Developmet Indicators. In Encyclopedia of Governance Vol. 2 1024–1025 (SAGE, 2007); https://doi.org/10.4135/9781412952613

  • Klimont, Z. & Winiwarter, W. Integrated Ammonia Abatement—Modelling of Emission Control Potentials and Costs in Gains. (International Institute for Applied Systems Analysis (IIASA), 2011).

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *