Climate Change: Projections and Its Possible Impact on Soybean
admin February 17, 2025

Climate Change: Projections and Its Possible Impact on Soybean

  • Allen MR, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M (2018) Framing and context. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A et al (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Cambridge

    Google Scholar 

  • Bai H, Purcell LC (2018) Aerial canopy temperature differences between fast-and slow-wilting soya bean genotypes. J Agron Crop Sci 204:243–251. https://doi.org/10.1111/jac.12259

    Article 

    Google Scholar 

  • Boulch G, Elmerich C, Djemel A, Lange B (2021) Evaluation of soybean ( Glycine max L. ) adaptation to northern European regions under different agro-climatic scenarios. Silico Plants 3:diab008. https://doi.org/10.1093/insilicoplants/diab008

    Article 

    Google Scholar 

  • Cui Y, Ning S, Jin J, Jiang S, Zhou Y, Wu C (2020) Quantitative lasting effects of drought stress at a growth stage on soybean evapotranspiration and aboveground BIOMASS. Water (Basel) 13:18. https://doi.org/10.3390/w13010018

    Article 
    CAS 

    Google Scholar 

  • Dhungana SK, Park J-H, Oh J-H, Kang B-K, Seo J-H, Sung J-S, Kim H-S, Shin S-O, Baek I-Y, Jung C-S (2021) Quantitative trait locus mapping for drought tolerance in soybean recombinant inbred line population. Plan Theory 10:1816. https://doi.org/10.3390/plants10091816

    Article 
    CAS 

    Google Scholar 

  • do Rosa VR, da Silva AA, Brito DS, Pereira Júnior JD, Silva CO, Dal-Bianco M, De Oliveira JA, Ribeiro C (2020) Drought stress during the reproductive stage of two soybean lines. Pesq Agrop Brasileira 55:e01736. https://doi.org/10.1590/s1678-3921.pab2020.v55.01736

    Article 

    Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang H, Wu J, Xie F (2020) Effect of drought stress during soybean R2–R6 growth stages on sucrose metabolism in leaf and seed. Int J Mol Sci 21:618. https://doi.org/10.3390/ijms21020618

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dupare BU, Sharma P, Billore SD (2017) Strategy for increasing the soybean productivity through frontline demonstrations and its role in soybean economy of India in changed climatic scenario

    Google Scholar 

  • FAOSTAT (2017) Food and agricultural organization data. Food security in the 2030 agenda for sustainable development. FAOSTAT, Rome

    Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123. https://doi.org/10.1016/j.plantsci.2007.03.004

    Article 
    CAS 

    Google Scholar 

  • Henry Throp (2023) What the IPCC report means for global action on 1.5°C

    Google Scholar 

  • Huang Y, Li J, Wang Y, Zhang XY, Li XY, Jiao M, Wang HR (2019) Impact simulation of drought on maize growth and yield in different growth stages. J Agric Catastrophol 9:47–49

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900-2100. Clim Res 17:145–168. https://doi.org/10.3354/cr017145

    Article 

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2023) Climate change 2022—impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Book 

    Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Report of the working group II to the fourth assessment report of the IPCC

    Google Scholar 

  • IPCC (2014a) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Barros

    Google Scholar 

  • IPCC (2014b) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Jähne F, Hahn V, Würschum T, Leiser WL (2020) Speed breeding short-day crops by LED-controlled light schemes. Theor Appl Genet 133:2335–2342. https://doi.org/10.1007/s00122-020-03601-4

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405. https://doi.org/10.1111/j.1438-8677.2009.00299.x

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jumrani K, Bhatia VS (2018) Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol Mol Biol Plants 24:37–50. https://doi.org/10.1007/s12298-017-0480-5

    Article 
    PubMed 

    Google Scholar 

  • Karges K, Bellingrath-Kimura SD, Watson CA, Stoddard FL, Halwani M, Reckling M (2022) Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. Eur J Agron 133:126415. https://doi.org/10.1016/j.eja.2021.126415

    Article 
    CAS 

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. https://doi.org/10.1093/jxb/err460

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar M, Govindasamy V, Rane J, Singh AK, Choudhary RL, Raina SK, George P, Aher LK, Singh NP (2017) Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. S Afr J Bot 113:230–238. https://doi.org/10.1016/j.sajb.2017.08.016

    Article 

    Google Scholar 

  • Kurukulasuriya P, Rosenthal S (2013) Climate change and agriculture: a review of impacts and adaptations. World Bank, Washington, DC

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. https://doi.org/10.1126/science.1204531

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacCarthy DS, Traore PS, Freduah BS, Adiku SGK, Dodor DE, Kumahor SK (2022) Productivity of soybean under projected climate change in a semi-arid region of West Africa: sensitivity of current production system. Agronomy 12:2614. https://doi.org/10.3390/agronomy12112614

    Article 

    Google Scholar 

  • Masuda TGPD (2009) World soybean production: area harvested, yield, and long-term projections. In: Harling K (ed) International food and agribusiness management association (IFAMA), pp 1–20

    Google Scholar 

  • Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104. https://doi.org/10.1016/S0300-483X(00)00306-1

    Article 
    PubMed 

    Google Scholar 

  • Mccabe GJ, Wolock DM (2015) Increasing Northern Hemisphere water deficit. Climatic change 132:237. https://doi.org/10.1007/s10584-015-1419-x

    Article 

    Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339. https://doi.org/10.3389/fpls.2015.00339

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra V, Kumar R, Shah HL, Eisner SL, Yang T (2017) Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change. Clim Chang 141:451–465. https://doi.org/10.1007/s10584-016-1886-8

    Article 

    Google Scholar 

  • OECD and, Food and Agriculture Organization of the United Nations (2021) Soybean projections: Production and trade

    Google Scholar 

  • Pinnamaneni SR, Anapalli SS, Bellaloui N, Reddy KN (2021) Effects of irrigation and planting geometry on soybean (Glycine max L.) seed nutrition in humid climates. Int J Agron 2021:1–9. https://doi.org/10.1155/2021/6625919

    Article 
    CAS 

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95:398–411. https://doi.org/10.1016/j.fcr.2005.04.008

    Article 

    Google Scholar 

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917. https://doi.org/10.2135/cropsci2008.01.0036

    Article 

    Google Scholar 

  • Rama Rao CA, Raju BMK, Josily S, Rao AVMS, Nagarjuna Kumar R, Srinivasa Rao M, Swapna N, Samba Siva G, Meghana YL, Prabhakar M, Singh VK (2022) Impact of climate change on productivity of food crops: a sub-national level assessment for India. Environ Res Commun 4:095001. https://doi.org/10.1088/2515-7620/ac8b68

    Article 

    Google Scholar 

  • Richey AS, Thomas BF, Lo M, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. https://doi.org/10.1002/2015WR017349

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Navarro DN, Margaret Oliver I, Albareda Contreras M, Ruiz-Sainz JE (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–190. https://doi.org/10.1051/agro/2010023

    Article 
    CAS 

    Google Scholar 

  • Saeed F, Bethke I, Fischer E, Legutke S, Shiogama H, Stone DA, Schleussner C-F (2018) Robust changes in tropical rainy season length at 1.5 °C and 2 °C. Environ Res Lett 13:064024. https://doi.org/10.1088/1748-9326/aab797

    Article 

    Google Scholar 

  • Sakoda K, Taniyoshi K, Yamori W, Tanaka Y (2022) Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. Physiol Plant 174:e13603. https://doi.org/10.1111/ppl.13603

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saleem A, Aper J, Muylle H, Borra-Serrano I, Quataert P, Lootens P, De Swaef T, Roldán-Ruiz I (2022) Response of a diverse European soybean collection to “short duration” and “long duration” drought stress. Front Plant Sci 13:818766. https://doi.org/10.3389/fpls.2022.818766

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5:014010. https://doi.org/10.1088/1748-9326/5/1/014010

    Article 

    Google Scholar 

  • Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804. https://doi.org/10.1093/jxb/erp164

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma P, Dupare BU, Khandekar N (2020) Economic impact assessment of broad-bed furrow seed drill for soybean. Agric Res 9:392–399. https://doi.org/10.1007/s40003-019-00444-4

    Article 
    CAS 

    Google Scholar 

  • Smolenaars WJ, Paparrizos S, Werners S, Ludwig F (2021) Flood risk and adaptation strategies for soybean production systems on the flood-prone pampas under climate change. Agronomy 11:1187. https://doi.org/10.3390/agronomy11061187

    Article 

    Google Scholar 

  • Udara Willhelm Abeydeera LH, Wadu Mesthrige J, Samarasinghalage TI (2019) Global research on carbon emissions: a Scientometric review. Sustain For 11:3972. https://doi.org/10.3390/su11143972

    Article 

    Google Scholar 

  • UNFCCC (2015a) Draft decision on Workstream 2 of the ad hoc working group on the Durban platform for enhanced action (advance unedited version). UNFCCC Secretariat, Bonn

    Google Scholar 

  • UNFCCC (2015b) Negotiating text (document FCCC/ADP/2015/1). UNFCCC, Bonn

    Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195. https://doi.org/10.1016/j.pbi.2006.01.019

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verrot Lucile DG (2016) Worldwide soil moisture changes driven by future hydro-climatic change scenarios. Hydrol Earth Syst Sci 2016:1–26

    Google Scholar 

  • Wang Y, Zhang Q, Wang SP, Wang JS, Yao Y (2017) Characteristics of agro-meteorological disasters and their risk in Gansu Province against the background of climate change. Nat Hazards 89:899–921. https://doi.org/10.1007/s11069-017-2999-8

    Article 

    Google Scholar 

  • Wang C, Linderholm HW, Song Y, Wang F, Liu Y, Ren G (2020) Impacts of drought on maize and soybean production in Northeast China during the past five decades. Int J Environ Res Public Health 17:2459

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Wu Z, Zhou Q, Wang X, Song S, Dong S (2022) Physiological response of soybean plants to water deficit. Front Plant Sci 12:809692. https://doi.org/10.3389/fpls.2021.809692

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei Y, Jin J, Jiang S, Ning S, Liu L (2018) Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei plain. China Agronomy 8:97. https://doi.org/10.3390/agronomy8070097

    Article 
    CAS 

    Google Scholar 

  • Wijewardana C, Reddy KR, Alsajri FA, Irby JT, Krutz J, Golden B (2018) Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrig Sci 36:241–255. https://doi.org/10.1007/s00271-018-0580-1

    Article 

    Google Scholar 

  • World Meteorological Organization (WMO) (2016) Hotter, drier, wetter. Face the future. World Meteorological Organization (WMO), Geneva

    Google Scholar 

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *