Assessment of Climate Change Impact on Potato-Potato Cropping System Under Semi-arid Environment and Designing of Adaptation Strategies
admin August 16, 2024

Assessment of Climate Change Impact on Potato-Potato Cropping System Under Semi-arid Environment and Designing of Adaptation Strategies

  • Abbas G, Ahmad S, Ahmad A, Nasim W, Fatima Z, Hussain S, ur Rehman MH, Khan MA, Hasanuzzaman M, Fahad S, Boote KJ (2017) Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab Pakistan. . Agric For Meteorol 247:42–55

    Article 

    Google Scholar 

  • Abbas G, Ahmed M, Fatima Z, Hussain S, Kheir AMS, Ercişli S, Ahmad S (2023) Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agric For Meteorol 341:109674. https://doi.org/10.1016/j.agrformet.2023.109674

    Article 

    Google Scholar 

  • Adavi Z, Moradi R, Saeidnejad AH, Tadayon MR, Mansouri H (2018) Assessment of potato response to climate change and adaptation strategies. Sci Hortic 228:91–102

    Article 

    Google Scholar 

  • Afzal O, Ahmed M, Fayyaz ul H, Shabbir G, Ahmed S, Hoogenboom G (2024) CSM-CROPGRO model to simulate safflower phenological development and yield. Int J Biometeorol 68:1213–1228. https://doi.org/10.1007/s00484-024-02662-0

    Article 
    PubMed 

    Google Scholar 

  • Ahmad S, Abbas G, Fatima Z, Khan RJ, Anjum MA, Ahmed M, Khan MA, Porter CH, Hoogenboom G (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. J Agron Crop Sci 203:442–452. https://doi.org/10.1111/jac.12206

    Article 

    Google Scholar 

  • Ahmed M (2020a) Systems modeling. Springer Nature Singapore Pte Ltd. pp. 409. ( https://doi.org/10.1007/978-981-15-4728-7

  • Ahmed M (2020b) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734, 139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M (2020c) Statistics and modeling. In: Ahmed M (ed.), Systems modeling, Springer Nature Singapore Pvt. Ltd., pp. 61–110. https://doi.org/10.1007/978-981-15-4728-7_3

  • Ahmed M (2023a) Climate change and farming system: a review of status, potentials, and further work needs for disaster risk reduction. In: Ahmed M, Ahmad S (eds) Disaster risk reduction in agriculture. Springer Nature Singapore, Singapore, pp 1–19. https://doi.org/10.1007/978-981-99-1763-1_1

  • Ahmed M (2023b) The science of climate change. In: Brinkmann R (ed) The Palgrave handbook of global sustainability. Springer International Publishing, Cham, pp 195–222. https://doi.org/10.1007/978-3-031-01949-4_22

  • Ahmed M (2023c) Global agricultural production – resilience to climate change, Springer Nature, ISBN978–3–031–14972–6. https://doi.org/10.1007/978-3-031-14973-3

  • Ahmed M, Stockle CO (eds) (2017) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-32059-5

  • Ahmed M, Ahmad S (eds) (2023) Disaster risk reduction in agriculture. Springer Nature. https://doi.org/10.1007/978-981-99-1763-1

  • Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of climate change and atmospheric CO2 impact on winter wheat in the Pacific Northwest using a multimodel ensemble. Front Ecol Evol 5. https://doi.org/10.3389/fevo.2017.00051

  • Ahmed M, Ijaz W, Ahmad S (2018) Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. J Plant Nutr 41(16):2069–2084. https://doi.org/10.1080/01904167.2018.1485933

    Article 
    CAS 

    Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9(1):7813. https://doi.org/10.1038/s41598-019-44251-x

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed M, Ahmad S, Fahad S (2021) Potential applications of DSSAT, AquaCrop, APSIM models for crop water productivity and irrigation scheduling. In: Fertigation technologies for micro irrigated crops. Apple Academic Press, pp 137–170. https://doi.org/10.1201/9781003084136

  • Ahmed M, Ahmad S, Kheir AMS (2022a) Climate change: an overview. In M. Ahmed (ed.), Global agricultural production – resilience to climate change, Springer Nature Switzerland AG 2022 https://doi.org/10.1007/978-3-031-14973-3_1

  • Ahmed M, Hayat R, Ahmad M, ul-Hassan M, Kheir AMS, ul-Hassan F, ur-Rehman MH, Shaheen FA, Raza MA, Ahmad S (2022b) Impact of climate change on dryland agricultural systems: a review of current status, potentials, and further work need. Int J Plant Prod. https://doi.org/10.1007/s42106-022-00197-1

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed M, Ahmad S, Abbas G, Hussain S, G. Hoogenboom (2024a) Cropping systems modeling under changing climate. Springer Nature. https://doi.org/10.1007/978-981-97-0331-9

  • Ahmed M, Ahmad S, Abbas G, Hussain S, G. Hoogenboom G (2024b) Potato-potato system. In: Cropping systems modeling under changing climate. Springer, Singapore. https://doi.org/10.1007/978-981-97-0331-9_10

  • Ali MGM, Ahmed M, Ibrahim MM, El Baroudy AA, Ali EF, Shokr MS, Aldosari AA, Majrashi A, Kheir AMS (2022) Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. Int J Biometeorol https://doi.org/10.1007/s00484-022-02253-x

  • Arora VK, Nath JC, Singh CB (2013) Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model. Agric Water Manag 124:69–76

    Article 

    Google Scholar 

  • Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Glob Change Biol 25(1):155–173. https://doi.org/10.1111/gcb.14481

    Article 

    Google Scholar 

  • Bender FD, Sentelhas PC (2020) Assessment of regional climate change impacts on Brazilian potato tuber yield. Int J Plant Prod 14(4):647–661

    Article 

    Google Scholar 

  • da Silva ALBR, Dias HB, Gupta R, Zotarelli L, Asseng S, Dukes MD, Porter C, Hoogenboom G (2024) Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA. Agric Water Manag 295:108769

    Article 

    Google Scholar 

  • Daccache A, Weatherhead EK, Stalham MA, Knox JW (2011) Impacts of climate change on irrigated potato production in a humid climate. Agric for Meteorol 151(12):1641–1653

    Article 

    Google Scholar 

  • Daccache A, Keay C, Jones RJ, Weatherhead EK, Stalham MA, Knox JW (2012) Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J Agric Sci 150(2):161–177

    Article 

    Google Scholar 

  • Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B (2019) Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front Plant Sci 10:563–571

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dua VK, Kumar S, Chaukhande P, Singh BP (2016) Impact of climate change on potato (Solanum tuberosum) productivity in Bihar and relative adaptation strategies. Indian J Agron 61(1):79–88

    Article 

    Google Scholar 

  • Dueri S, Brown H, Asseng S, Ewert F, Webber H, George M, Craigie R, Guarin JR, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Kersebaum KC, Nendel C, Olesen JE, Padovan G, Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhao C, Zhao J, Zhao Z, Zhu Y, Martre P (2022) Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. J Exp Bot. https://doi.org/10.1093/jxb/erac221

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665

    Article 

    Google Scholar 

  • Franke AC, Haverkort AJ, Steyn JM (2013) Climate change and potato production in contrasting South African agro-ecosystems 2. Assessing risks and opportunities of adaptation strategies. Potato Res 56(1):51–66

    Article 

    Google Scholar 

  • Galmarini S, Solazzo E, Ferrise R, Srivastava AK, Ahmed M, Asseng S, Cannon AJ, Dentener F, De Sanctis G, Gaiser T, Gao Y, Gayler S, Gutierrez JM, Hoogenboom G, Iturbide M, Jury M, Lange S, Loukos H, Maraun D, Moriondo M, McGinnis S, Nendel C, Padovan G, Riccio A, Ripoche D, Stockle CO, Supit I, Thao S, Trombi G, Vrac M, Weber TKD, Zhao C (2024) Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments. Agric Syst 215:103846. https://doi.org/10.1016/j.agsy.2023.103846

    Article 

    Google Scholar 

  • Gordon HB, O’Farrell S, Collier M, Dix M, Rotstayn L, Kowalczyk E, Hirst T, Watterson I (2010) The CSIRO Mk3. 5 climate model (Vol. 74). CSIRO and Bureau of Meteorology

  • Goswami B, Hussain R, Kumar PV, Saikia US, Banarjee S (2018) Impact assessment of climate change on potato productivity in Assam using SUBSTOR-Potato model. J Agrometeorol 20(2):105–109

    Article 

    Google Scholar 

  • Gregory PJ, Marshall B (2012) Attribution of climate change: a methodology to estimate the potential contribution to increases in potato yield in S cotland since 1960. Glob Change Biol 18(4):1372–1388

    Article 

    Google Scholar 

  • Guarin JR, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Bindi M, Bracho-Mujica G, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Hunt LA, Kersebaum KC, Nendel C, Olesen JE, Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhang Z, Zhao C, Zhao J, Zhao Z, Zhu Y, Asseng S (2022) Evidence for increasing global wheat yield potential. Environ Res Lett 17(12):124045. https://doi.org/10.1088/1748-9326/aca77c

    Article 

    Google Scholar 

  • Guarin J, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno D, Stella T, Ahmed M, Alderman P, Basso B, Berger A, Bindi M, Bracho-Mujica G, Cammarano D, Chen Y, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Hunt L, Kersebaum K, Nendel C, Olesen J, Palosuo T, Priesack E, Pullens J, Rodriguez A, Rotter R, Ruiz Ramos M, Semenov M, Senapati N, Siebert S, Srivastava A, Stockle C, Supit I, Tao F, Thorburn P, Wang E, Weber T, Xiao L, Zhang Z, Zhao C, Zhao J, Zhao Z, Zhu Y, Asseng S (2023) A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations. Open Data J Agric Res 9:26–33. https://doi.org/10.18174/odjar.v9i0.18573

    Article 

    Google Scholar 

  • Haverkort AJ, Franke AC, Engelbrecht FA, Steyn JM (2013) Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Res. 56(1):31–50

    Article 

    Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80(4):271–279

    Article 

    Google Scholar 

  • Holden NM, Brereton AJ (2006) Adaptation of water and nitrogen management of spring barley and potato as a response to possible climate change in Ireland. Agric Water Manag 82(3):297–317

    Article 

    Google Scholar 

  • Hoogenboom G, Porter CH, Shelia V, Boote KJ, Singh U, Pavan W, Oliveira FAA, Moreno-Cadena LP, Ferreira TB, White JW, Lizaso JI, Pequeno DNL, Kimball BA, Alderman PD, Thorp KR, Cuadra SV, Vianna MS, Villalobos FJ, Batchelor WD, Asseng S, Jones MR, Hopf A, Dias HB, Hunt LA, Jones JW (2023) Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.8.2 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA

  • Hu Q, Yang N, Pan F, Pan X, Wang X, Yang P (2017) Adjusting sowing dates improved potato adaptation to climate change in semiarid region. China Sustainability 9(4):615–622

    Article 

    Google Scholar 

  • Huang N, Wang J, Song Y, Pan Y, Han G, Zhang Z, Ma S, Sun G, Liu C, Pan Z (2022) The adaptation mechanism based on an integrated vulnerability assessment of potato production to climate change in Inner Mongolia. China Mitig Adapt Strateg Glob Chang 27(3):1–19

    CAS 

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265

    Article 

    Google Scholar 

  • Jones C, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’connor FM, Andres RJ, Bell C, Boo KO (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570

    Article 

    Google Scholar 

  • Kheir AMS, Hoogenboom G, Ammar KA, Ahmed M, Feike T, Elnashar A, Liu B, Ding Z, Asseng S (2022) Minimizing trade-offs between wheat yield and resource-use efficiency in the Nile Delta – a multi-model analysis. Field Crop Res 287:108638. https://doi.org/10.1016/j.fcr.2022.108638

    Article 

    Google Scholar 

  • Kim YU, Lee BW (2020) Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci Total Environ 742:140667

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleinwechter U, Gastelo M, Ritchie J, Nelson G, Asseng S (2016) Simulating cultivar variations in potato yields for contrasting environments. Agric Syst 145:51–63

    Article 

    Google Scholar 

  • Kumar SN, Govindakrishnan PM, Swarooparani DN, Nitin C, Surabhi J, Aggarwal PK (2015) Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int J Plant Prod 9(1):151–170

    Google Scholar 

  • Lemessa SD, Watebaji MD, Yismaw MA (2019) Climate change adaptation strategies in response to food insecurity: the paradox of improved potato varieties adoption in eastern Ethiopia. Cogent Food & Agric 5(1):1640835

    Article 

    Google Scholar 

  • Li Q, Zhang S (2020) Impacts of recent climate change on potato yields at a provincial scale in Northwest China. Agronomy 10(3):426–435

    Article 

    Google Scholar 

  • Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25(4):1428–1444. https://doi.org/10.1111/gcb.14542

    Article 
    PubMed 

    Google Scholar 

  • Liu B, Martre P, Ewert F, Webber H, Waha K, Thorburn PJ, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Cao W, Challinor AJ, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Eivind Olesen J, Palosuo T, Porter JR, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wang E, Wolf J, Xiao L, Zhang, Z, Zhao Z, Zhu Y, Asseng S (2023) AgMIP-Wheat multi-model simulations on climate change impact and adaptation for global wheat. Open Data J Agric Res 9,10–25.

  • Maho A, Skënderasi B, Cara M (2019) Changes in potato cultivation technology in Korça region as adaptation to climate change. Ital J Agron 14(2):84–92

    Article 

    Google Scholar 

  • Marteau-Bazouni M, Jeuffroy M-H, Guilpart N (2024) Grain legume response to future climate and adaptation strategies in Europe: a review of simulation studies. Eur J Agron 153:127056

    Article 

    Google Scholar 

  • Morel J, Kumar U, Ahmed M, Bergkvist G, Lana M, Halling M, Parsons D (2021) Quantification of the impact of temperature, CO2, and rainfall changes on Swedish annual crops production using the APSIM model. Front Sustain Food Syst 5(178). https://doi.org/10.3389/fsufs.2021.665025

  • Nadeem M, Nazer Khan M, Abbas G, Fatima Z, Iqbal P, Ahmed M, Ali Raza M, Rehman A, Ul Haq E, Hayat A, Ali M (2022) Application of CSM-CANEGRO model for climate change impact assessment and adaptation for sugarcane in semi-arid environment of Southern Punjab. Pakistan Int J Plant Prod 16:443–466

    Article 

    Google Scholar 

  • Nand MM, Iese V, Singh U, Wairiu M, Jokhan A, Prakash R (2016) Evaluation of decision support system for agrotechnology transfer SUBSTOR potato model (v4.5) under tropical conditions. South Pac J Nat App Sci 34(1):1–11

    Article 

    Google Scholar 

  • Naz S, Ahmad S, Abbas G, Fatima Z, Hussain S, Ahmed M, Khan MA, Khan A, Fahad S, Nasim W, Ercisli S, Wilkerson CJ, Hoogenboom G (2022) Modeling the impact of climate warming on potato phenology. Eur J Agron 132:126404. https://doi.org/10.1016/j.eja.2021.126404

    Article 

    Google Scholar 

  • Pradel W, Gatto M, Hareau G, Pandey SK, Bhardway V (2019) Adoption of potato varieties and their role for climate change adaptation in India. Clim Risk Manag 23:114–123

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prasad R, Hochmuth GJ, Boote KJ (2015) Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PLoS ONE 10(1):e0117891

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulatov B, Linderson ML, Hall K, Jönsson AM (2015) Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric for Meteorol 214:281–292

    Article 

    Google Scholar 

  • Purwanti TS, Syafrial S, Huang WC, Saeri M (2022) What drives climate change adaptation practices in smallholder farmers? Evidence from potato farmers in Indonesia. Atmosphere 13(1):113–119

    Article 

    Google Scholar 

  • Quiroz R, Ramírez DA, Kroschel J, Andrade-Piedra J, Barreda C, Condori B, Mares V, Monneveux P, Perez W (2018) Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agric 3(1):273–283

    Article 

    Google Scholar 

  • Rana A, Dua VK, Chauhan S, Sharma J (2020) Climate change and potato productivity in Punjab—impacts and adaptation. Potato Res 63(4):597–613

    Article 
    CAS 

    Google Scholar 

  • Raymundo R, Asseng S, Cammarano D, Quiroz R (2014) Potato, sweet potato, and yam models for climate change: a review. Field Crops Res 166:173–185

    Article 

    Google Scholar 

  • Raymundo R, Asseng S, Prassad R, Kleinwechter U, Concha J, Condori B, Bowen W, Wolf J, Olesen JE, Dong Q, Zotarelli L (2017) Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Res 202:57–76

    Article 

    Google Scholar 

  • Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, Quiroz R, Hareau G, Wolf J (2018) Climate change impact on global potato production. Eur J Agron 100:87–98

    Article 

    Google Scholar 

  • Ruane AC, McDermid SP (2017) Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspect 4(1):1–20

    Article 

    Google Scholar 

  • Scott GJ, Petsakos A, Juarez H (2019) Climate change, food security, and future scenarios for potato production in India to 2030. Food Secur 11(1):43–56

    Article 

    Google Scholar 

  • Shayanmehr S, Rastegari Henneberry S, Sabouhi Sabouni M, Shahnoushi Foroushani N (2020) Climate change and sustainability of crop yield in dry regions food insecurity. Sustainability 12(23):9890

    Article 

    Google Scholar 

  • Sheikh ZA, Ashraf S, Weesakul S, Ali M, Hanh NC (2024) Impact of climate change on farmers and adaptation strategies in Rangsit. Thailand Environ Challenges 15:100902

    Article 

    Google Scholar 

  • Srivastava RK, Talla A, Swain DK, Panda RK (2019) Quantitative approaches in adaptation strategies to cope with increased temperatures following climate change in potato crop. Potato Res 62(2):175–191

    Article 
    CAS 

    Google Scholar 

  • Stastna M, Toman F, Dufkova J (2010) Usage of SUBSTOR model in potato yield prediction. Agric Water Manag 97(2):286–290

    Article 

    Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208

    Article 

    Google Scholar 

  • Tooley BE, Mallory EB, Porter GA, Hoogenboom G (2021) Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT. Agric for Meteorol 307:108452

    Article 

    Google Scholar 

  • Tubiello FN, Rosenzweig C, Goldberg RA, Jagtap S, Jones JW (2002) Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Clim. Res. 20(3):259–270

    Article 

    Google Scholar 

  • von Gehren P, Bomers S, Tripolt T, Söllinger J, Prat N, Redondo B, Vorss R, Teige M, Kamptner A, Ribarits A (2023) Farmers feel the climate change: variety choice as an adaptation strategy of European potato farmers. Climate 11(9):189. https://doi.org/10.3390/cli11090189

  • Waaswa A, Nkurumwa AO, Kibe AM (2021) Communicating climate change adaptation strategies: climate-smart agriculture information dissemination pathways among smallholder potato farmers in Gilgil Sub-County. Kenya Heliyon 7(8):e07873

    Article 
    PubMed 

    Google Scholar 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of crop–environment–management interactions. Glob Change Biol 24(11):5072–5083. https://doi.org/10.1111/gcb.14411

    Article 

    Google Scholar 

  • Walshe R, Argumedo A (2016) Ayni, Ayllu, Yanantin and Chanincha: the cultural values enabling adaptation to climate change in communities of the potato park, in the Peruvian Andes. GAIA-Ecolog Persp Sci Soc 25(3):166–173

    Google Scholar 

  • Wang CL, Shen SH, Zhang SY, Li QZ, Yao YB (2015) Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu. China J Integr Agric 14(2):398–409

    Article 

    Google Scholar 

  • Wild M, Folini D, Henschel F, Fischer N, Müller B (2015) Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol Energy 116:12–24

    Article 

    Google Scholar 

  • Yang JM, Yang JY, Liu S, Hoogenboom G (2014) An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst 127:81–89. https://doi.org/10.1016/j.agsy.2014.01.008

  • Zagre I, Akinseye FM, Worou ON, Kone M, Faye A (2024) Climate change adaptation strategies among smallholder farmers in Senegal’s semi-arid zone: role of socio-economic factors and institutional supports. Front Clim 6:1332196

  • Zhang W-P, Surigaoge S, Yang H, Yu R-P, Wu J-P, Xing Y, Chen Y, Li L (2024) Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant Soil 1–24

  • Zheng H, Zhang L, Sun H, Zheng A, Harrison MT, Li W, Zou J, Zhang D, Chen F, Yin X (2024) Optimal sowing time to adapt soybean production to global warming with different cultivars in the Huanghuaihai Farming Region of China. Field Crop Res 312:109386

    Article 

    Google Scholar 

  • Zhou R, Jiang F, Liu Y, Yu X, Song X, Wu Z, Cammarano D (2024) Environmental changes impact on vegetables physiology and nutrition – gaps between vegetable and cereal crops. Sci Total Environ 933:173180

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • CONTENT CREDIT

    Leave a Reply

    Your email address will not be published. Required fields are marked *