
Assessment of Climate Change Impact on Potato-Potato Cropping System Under Semi-arid Environment and Designing of Adaptation Strategies
Abbas G, Ahmad S, Ahmad A, Nasim W, Fatima Z, Hussain S, ur Rehman MH, Khan MA, Hasanuzzaman M, Fahad S, Boote KJ (2017) Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab Pakistan. . Agric For Meteorol 247:42–55
Google Scholar
Abbas G, Ahmed M, Fatima Z, Hussain S, Kheir AMS, Ercişli S, Ahmad S (2023) Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agric For Meteorol 341:109674. https://doi.org/10.1016/j.agrformet.2023.109674
Google Scholar
Adavi Z, Moradi R, Saeidnejad AH, Tadayon MR, Mansouri H (2018) Assessment of potato response to climate change and adaptation strategies. Sci Hortic 228:91–102
Google Scholar
Afzal O, Ahmed M, Fayyaz ul H, Shabbir G, Ahmed S, Hoogenboom G (2024) CSM-CROPGRO model to simulate safflower phenological development and yield. Int J Biometeorol 68:1213–1228. https://doi.org/10.1007/s00484-024-02662-0
Google Scholar
Ahmad S, Abbas G, Fatima Z, Khan RJ, Anjum MA, Ahmed M, Khan MA, Porter CH, Hoogenboom G (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. J Agron Crop Sci 203:442–452. https://doi.org/10.1111/jac.12206
Google Scholar
Ahmed M (2020a) Systems modeling. Springer Nature Singapore Pte Ltd. pp. 409. ( https://doi.org/10.1007/978-981-15-4728-7
Ahmed M (2020b) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734, 139397. https://doi.org/10.1016/j.scitotenv.2020.139397
Ahmed M (2020c) Statistics and modeling. In: Ahmed M (ed.), Systems modeling, Springer Nature Singapore Pvt. Ltd., pp. 61–110. https://doi.org/10.1007/978-981-15-4728-7_3
Ahmed M (2023a) Climate change and farming system: a review of status, potentials, and further work needs for disaster risk reduction. In: Ahmed M, Ahmad S (eds) Disaster risk reduction in agriculture. Springer Nature Singapore, Singapore, pp 1–19. https://doi.org/10.1007/978-981-99-1763-1_1
Ahmed M (2023b) The science of climate change. In: Brinkmann R (ed) The Palgrave handbook of global sustainability. Springer International Publishing, Cham, pp 195–222. https://doi.org/10.1007/978-3-031-01949-4_22
Ahmed M (2023c) Global agricultural production – resilience to climate change, Springer Nature, ISBN978–3–031–14972–6. https://doi.org/10.1007/978-3-031-14973-3
Ahmed M, Stockle CO (eds) (2017) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-32059-5
Ahmed M, Ahmad S (eds) (2023) Disaster risk reduction in agriculture. Springer Nature. https://doi.org/10.1007/978-981-99-1763-1
Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of climate change and atmospheric CO2 impact on winter wheat in the Pacific Northwest using a multimodel ensemble. Front Ecol Evol 5. https://doi.org/10.3389/fevo.2017.00051
Ahmed M, Ijaz W, Ahmad S (2018) Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. J Plant Nutr 41(16):2069–2084. https://doi.org/10.1080/01904167.2018.1485933
Google Scholar
Ahmed M, Stöckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9(1):7813. https://doi.org/10.1038/s41598-019-44251-x
Google Scholar
Ahmed M, Ahmad S, Fahad S (2021) Potential applications of DSSAT, AquaCrop, APSIM models for crop water productivity and irrigation scheduling. In: Fertigation technologies for micro irrigated crops. Apple Academic Press, pp 137–170. https://doi.org/10.1201/9781003084136
Ahmed M, Ahmad S, Kheir AMS (2022a) Climate change: an overview. In M. Ahmed (ed.), Global agricultural production – resilience to climate change, Springer Nature Switzerland AG 2022 https://doi.org/10.1007/978-3-031-14973-3_1
Ahmed M, Hayat R, Ahmad M, ul-Hassan M, Kheir AMS, ul-Hassan F, ur-Rehman MH, Shaheen FA, Raza MA, Ahmad S (2022b) Impact of climate change on dryland agricultural systems: a review of current status, potentials, and further work need. Int J Plant Prod. https://doi.org/10.1007/s42106-022-00197-1
Google Scholar
Ahmed M, Ahmad S, Abbas G, Hussain S, G. Hoogenboom (2024a) Cropping systems modeling under changing climate. Springer Nature. https://doi.org/10.1007/978-981-97-0331-9
Ahmed M, Ahmad S, Abbas G, Hussain S, G. Hoogenboom G (2024b) Potato-potato system. In: Cropping systems modeling under changing climate. Springer, Singapore. https://doi.org/10.1007/978-981-97-0331-9_10
Ali MGM, Ahmed M, Ibrahim MM, El Baroudy AA, Ali EF, Shokr MS, Aldosari AA, Majrashi A, Kheir AMS (2022) Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. Int J Biometeorol https://doi.org/10.1007/s00484-022-02253-x
Arora VK, Nath JC, Singh CB (2013) Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model. Agric Water Manag 124:69–76
Google Scholar
Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Glob Change Biol 25(1):155–173. https://doi.org/10.1111/gcb.14481
Google Scholar
Bender FD, Sentelhas PC (2020) Assessment of regional climate change impacts on Brazilian potato tuber yield. Int J Plant Prod 14(4):647–661
Google Scholar
da Silva ALBR, Dias HB, Gupta R, Zotarelli L, Asseng S, Dukes MD, Porter C, Hoogenboom G (2024) Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA. Agric Water Manag 295:108769
Google Scholar
Daccache A, Weatherhead EK, Stalham MA, Knox JW (2011) Impacts of climate change on irrigated potato production in a humid climate. Agric for Meteorol 151(12):1641–1653
Google Scholar
Daccache A, Keay C, Jones RJ, Weatherhead EK, Stalham MA, Knox JW (2012) Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J Agric Sci 150(2):161–177
Google Scholar
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B (2019) Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front Plant Sci 10:563–571
Google Scholar
Dua VK, Kumar S, Chaukhande P, Singh BP (2016) Impact of climate change on potato (Solanum tuberosum) productivity in Bihar and relative adaptation strategies. Indian J Agron 61(1):79–88
Google Scholar
Dueri S, Brown H, Asseng S, Ewert F, Webber H, George M, Craigie R, Guarin JR, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Kersebaum KC, Nendel C, Olesen JE, Padovan G, Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhao C, Zhao J, Zhao Z, Zhu Y, Martre P (2022) Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. J Exp Bot. https://doi.org/10.1093/jxb/erac221
Google Scholar
Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665
Google Scholar
Franke AC, Haverkort AJ, Steyn JM (2013) Climate change and potato production in contrasting South African agro-ecosystems 2. Assessing risks and opportunities of adaptation strategies. Potato Res 56(1):51–66
Google Scholar
Galmarini S, Solazzo E, Ferrise R, Srivastava AK, Ahmed M, Asseng S, Cannon AJ, Dentener F, De Sanctis G, Gaiser T, Gao Y, Gayler S, Gutierrez JM, Hoogenboom G, Iturbide M, Jury M, Lange S, Loukos H, Maraun D, Moriondo M, McGinnis S, Nendel C, Padovan G, Riccio A, Ripoche D, Stockle CO, Supit I, Thao S, Trombi G, Vrac M, Weber TKD, Zhao C (2024) Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments. Agric Syst 215:103846. https://doi.org/10.1016/j.agsy.2023.103846
Google Scholar
Gordon HB, O’Farrell S, Collier M, Dix M, Rotstayn L, Kowalczyk E, Hirst T, Watterson I (2010) The CSIRO Mk3. 5 climate model (Vol. 74). CSIRO and Bureau of Meteorology
Goswami B, Hussain R, Kumar PV, Saikia US, Banarjee S (2018) Impact assessment of climate change on potato productivity in Assam using SUBSTOR-Potato model. J Agrometeorol 20(2):105–109
Google Scholar
Gregory PJ, Marshall B (2012) Attribution of climate change: a methodology to estimate the potential contribution to increases in potato yield in S cotland since 1960. Glob Change Biol 18(4):1372–1388
Google Scholar
Guarin JR, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Bindi M, Bracho-Mujica G, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Hunt LA, Kersebaum KC, Nendel C, Olesen JE, Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhang Z, Zhao C, Zhao J, Zhao Z, Zhu Y, Asseng S (2022) Evidence for increasing global wheat yield potential. Environ Res Lett 17(12):124045. https://doi.org/10.1088/1748-9326/aca77c
Google Scholar
Guarin J, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno D, Stella T, Ahmed M, Alderman P, Basso B, Berger A, Bindi M, Bracho-Mujica G, Cammarano D, Chen Y, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Hunt L, Kersebaum K, Nendel C, Olesen J, Palosuo T, Priesack E, Pullens J, Rodriguez A, Rotter R, Ruiz Ramos M, Semenov M, Senapati N, Siebert S, Srivastava A, Stockle C, Supit I, Tao F, Thorburn P, Wang E, Weber T, Xiao L, Zhang Z, Zhao C, Zhao J, Zhao Z, Zhu Y, Asseng S (2023) A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations. Open Data J Agric Res 9:26–33. https://doi.org/10.18174/odjar.v9i0.18573
Google Scholar
Haverkort AJ, Franke AC, Engelbrecht FA, Steyn JM (2013) Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Res. 56(1):31–50
Google Scholar
Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80(4):271–279
Google Scholar
Holden NM, Brereton AJ (2006) Adaptation of water and nitrogen management of spring barley and potato as a response to possible climate change in Ireland. Agric Water Manag 82(3):297–317
Google Scholar
Hoogenboom G, Porter CH, Shelia V, Boote KJ, Singh U, Pavan W, Oliveira FAA, Moreno-Cadena LP, Ferreira TB, White JW, Lizaso JI, Pequeno DNL, Kimball BA, Alderman PD, Thorp KR, Cuadra SV, Vianna MS, Villalobos FJ, Batchelor WD, Asseng S, Jones MR, Hopf A, Dias HB, Hunt LA, Jones JW (2023) Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.8.2 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA
Hu Q, Yang N, Pan F, Pan X, Wang X, Yang P (2017) Adjusting sowing dates improved potato adaptation to climate change in semiarid region. China Sustainability 9(4):615–622
Google Scholar
Huang N, Wang J, Song Y, Pan Y, Han G, Zhang Z, Ma S, Sun G, Liu C, Pan Z (2022) The adaptation mechanism based on an integrated vulnerability assessment of potato production to climate change in Inner Mongolia. China Mitig Adapt Strateg Glob Chang 27(3):1–19
Google Scholar
Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265
Google Scholar
Jones C, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’connor FM, Andres RJ, Bell C, Boo KO (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570
Google Scholar
Kheir AMS, Hoogenboom G, Ammar KA, Ahmed M, Feike T, Elnashar A, Liu B, Ding Z, Asseng S (2022) Minimizing trade-offs between wheat yield and resource-use efficiency in the Nile Delta – a multi-model analysis. Field Crop Res 287:108638. https://doi.org/10.1016/j.fcr.2022.108638
Google Scholar
Kim YU, Lee BW (2020) Earlier planting offsets the adverse effect of global warming on spring potato in South Korea. Sci Total Environ 742:140667
Google Scholar
Kleinwechter U, Gastelo M, Ritchie J, Nelson G, Asseng S (2016) Simulating cultivar variations in potato yields for contrasting environments. Agric Syst 145:51–63
Google Scholar
Kumar SN, Govindakrishnan PM, Swarooparani DN, Nitin C, Surabhi J, Aggarwal PK (2015) Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int J Plant Prod 9(1):151–170
Lemessa SD, Watebaji MD, Yismaw MA (2019) Climate change adaptation strategies in response to food insecurity: the paradox of improved potato varieties adoption in eastern Ethiopia. Cogent Food & Agric 5(1):1640835
Google Scholar
Li Q, Zhang S (2020) Impacts of recent climate change on potato yields at a provincial scale in Northwest China. Agronomy 10(3):426–435
Google Scholar
Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology 25(4):1428–1444. https://doi.org/10.1111/gcb.14542
Google Scholar
Liu B, Martre P, Ewert F, Webber H, Waha K, Thorburn PJ, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Cao W, Challinor AJ, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Eivind Olesen J, Palosuo T, Porter JR, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wang E, Wolf J, Xiao L, Zhang, Z, Zhao Z, Zhu Y, Asseng S (2023) AgMIP-Wheat multi-model simulations on climate change impact and adaptation for global wheat. Open Data J Agric Res 9,10–25.
Maho A, Skënderasi B, Cara M (2019) Changes in potato cultivation technology in Korça region as adaptation to climate change. Ital J Agron 14(2):84–92
Google Scholar
Marteau-Bazouni M, Jeuffroy M-H, Guilpart N (2024) Grain legume response to future climate and adaptation strategies in Europe: a review of simulation studies. Eur J Agron 153:127056
Google Scholar
Morel J, Kumar U, Ahmed M, Bergkvist G, Lana M, Halling M, Parsons D (2021) Quantification of the impact of temperature, CO2, and rainfall changes on Swedish annual crops production using the APSIM model. Front Sustain Food Syst 5(178). https://doi.org/10.3389/fsufs.2021.665025
Nadeem M, Nazer Khan M, Abbas G, Fatima Z, Iqbal P, Ahmed M, Ali Raza M, Rehman A, Ul Haq E, Hayat A, Ali M (2022) Application of CSM-CANEGRO model for climate change impact assessment and adaptation for sugarcane in semi-arid environment of Southern Punjab. Pakistan Int J Plant Prod 16:443–466
Google Scholar
Nand MM, Iese V, Singh U, Wairiu M, Jokhan A, Prakash R (2016) Evaluation of decision support system for agrotechnology transfer SUBSTOR potato model (v4.5) under tropical conditions. South Pac J Nat App Sci 34(1):1–11
Google Scholar
Naz S, Ahmad S, Abbas G, Fatima Z, Hussain S, Ahmed M, Khan MA, Khan A, Fahad S, Nasim W, Ercisli S, Wilkerson CJ, Hoogenboom G (2022) Modeling the impact of climate warming on potato phenology. Eur J Agron 132:126404. https://doi.org/10.1016/j.eja.2021.126404
Google Scholar
Pradel W, Gatto M, Hareau G, Pandey SK, Bhardway V (2019) Adoption of potato varieties and their role for climate change adaptation in India. Clim Risk Manag 23:114–123
Google Scholar
Prasad R, Hochmuth GJ, Boote KJ (2015) Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PLoS ONE 10(1):e0117891
Google Scholar
Pulatov B, Linderson ML, Hall K, Jönsson AM (2015) Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric for Meteorol 214:281–292
Google Scholar
Purwanti TS, Syafrial S, Huang WC, Saeri M (2022) What drives climate change adaptation practices in smallholder farmers? Evidence from potato farmers in Indonesia. Atmosphere 13(1):113–119
Google Scholar
Quiroz R, Ramírez DA, Kroschel J, Andrade-Piedra J, Barreda C, Condori B, Mares V, Monneveux P, Perez W (2018) Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agric 3(1):273–283
Google Scholar
Rana A, Dua VK, Chauhan S, Sharma J (2020) Climate change and potato productivity in Punjab—impacts and adaptation. Potato Res 63(4):597–613
Google Scholar
Raymundo R, Asseng S, Cammarano D, Quiroz R (2014) Potato, sweet potato, and yam models for climate change: a review. Field Crops Res 166:173–185
Google Scholar
Raymundo R, Asseng S, Prassad R, Kleinwechter U, Concha J, Condori B, Bowen W, Wolf J, Olesen JE, Dong Q, Zotarelli L (2017) Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Res 202:57–76
Google Scholar
Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, Quiroz R, Hareau G, Wolf J (2018) Climate change impact on global potato production. Eur J Agron 100:87–98
Google Scholar
Ruane AC, McDermid SP (2017) Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspect 4(1):1–20
Google Scholar
Scott GJ, Petsakos A, Juarez H (2019) Climate change, food security, and future scenarios for potato production in India to 2030. Food Secur 11(1):43–56
Google Scholar
Shayanmehr S, Rastegari Henneberry S, Sabouhi Sabouni M, Shahnoushi Foroushani N (2020) Climate change and sustainability of crop yield in dry regions food insecurity. Sustainability 12(23):9890
Google Scholar
Sheikh ZA, Ashraf S, Weesakul S, Ali M, Hanh NC (2024) Impact of climate change on farmers and adaptation strategies in Rangsit. Thailand Environ Challenges 15:100902
Google Scholar
Srivastava RK, Talla A, Swain DK, Panda RK (2019) Quantitative approaches in adaptation strategies to cope with increased temperatures following climate change in potato crop. Potato Res 62(2):175–191
Google Scholar
Stastna M, Toman F, Dufkova J (2010) Usage of SUBSTOR model in potato yield prediction. Agric Water Manag 97(2):286–290
Google Scholar
Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208
Google Scholar
Tooley BE, Mallory EB, Porter GA, Hoogenboom G (2021) Predicting the response of a potato-grain production system to climate change for a humid continental climate using DSSAT. Agric for Meteorol 307:108452
Google Scholar
Tubiello FN, Rosenzweig C, Goldberg RA, Jagtap S, Jones JW (2002) Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Clim. Res. 20(3):259–270
Google Scholar
von Gehren P, Bomers S, Tripolt T, Söllinger J, Prat N, Redondo B, Vorss R, Teige M, Kamptner A, Ribarits A (2023) Farmers feel the climate change: variety choice as an adaptation strategy of European potato farmers. Climate 11(9):189. https://doi.org/10.3390/cli11090189
Waaswa A, Nkurumwa AO, Kibe AM (2021) Communicating climate change adaptation strategies: climate-smart agriculture information dissemination pathways among smallholder potato farmers in Gilgil Sub-County. Kenya Heliyon 7(8):e07873
Google Scholar
Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of crop–environment–management interactions. Glob Change Biol 24(11):5072–5083. https://doi.org/10.1111/gcb.14411
Google Scholar
Walshe R, Argumedo A (2016) Ayni, Ayllu, Yanantin and Chanincha: the cultural values enabling adaptation to climate change in communities of the potato park, in the Peruvian Andes. GAIA-Ecolog Persp Sci Soc 25(3):166–173
Wang CL, Shen SH, Zhang SY, Li QZ, Yao YB (2015) Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu. China J Integr Agric 14(2):398–409
Google Scholar
Wild M, Folini D, Henschel F, Fischer N, Müller B (2015) Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol Energy 116:12–24
Google Scholar
Yang JM, Yang JY, Liu S, Hoogenboom G (2014) An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst 127:81–89. https://doi.org/10.1016/j.agsy.2014.01.008
Zagre I, Akinseye FM, Worou ON, Kone M, Faye A (2024) Climate change adaptation strategies among smallholder farmers in Senegal’s semi-arid zone: role of socio-economic factors and institutional supports. Front Clim 6:1332196
Zhang W-P, Surigaoge S, Yang H, Yu R-P, Wu J-P, Xing Y, Chen Y, Li L (2024) Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant Soil 1–24
Zheng H, Zhang L, Sun H, Zheng A, Harrison MT, Li W, Zou J, Zhang D, Chen F, Yin X (2024) Optimal sowing time to adapt soybean production to global warming with different cultivars in the Huanghuaihai Farming Region of China. Field Crop Res 312:109386
Google Scholar
Zhou R, Jiang F, Liu Y, Yu X, Song X, Wu Z, Cammarano D (2024) Environmental changes impact on vegetables physiology and nutrition – gaps between vegetable and cereal crops. Sci Total Environ 933:173180
Google Scholar