Nigeria Energy Transition Plan

October 2021

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

Current context

While African countries account for ~10% of global emissions, stabilizing the climate and avoiding the worst physical risks is impossible without African countries also transitioning to net-zero emissions

However, Nigeria, like other African countries, faces a range of other imperatives, including:

- Lifting 100 million people out of poverty and driving economic growth
- Bringing modern energy services to the full population
- Managing the long term job loss in the oil sector that will result from reduced global demand as the global economy transitions to net-zero

This document brings together these various dimensions to help define a potential series of pathways and choices for Nigeria


Objectives

Develop a fact base on Nigeria's energy transition pathway and enable a decision on way forward:

- What is required for Nigeria to achieve Net Zero by 2050?
- What would be a realistic timeline that balances emission reductions with economic development imperatives?

Total GHG emissions of Nigeria in 2020 are estimated at ~275 Mt CO_2e , with 65% related to energy consumption and industrial processes

GHG emissions in Nigeria (2020), MtCO₂e

1. High Temperature Heat; 2. Low-Medium Temperature Heat; 3. Land use, land use change and forestry; 4. Will be modelled as part of their end-use sector; 5. Emissions from livestock and soils 6. Slight discrepancy with NDC Intermediary 2020 due to lower emissions considered for O&G

Nigeria has recently announced the NDC guided plan which represents a good start for the medium term to 2030, but it will not result in a net zero pathway by 2050

ONLY ENERGY AND INDUSTRIAL PROCESSES INCLUDED

GHG emissions trajectory, MtCO₂e

- BAU - NDC-guided	— Net zero			
350				
300				
250				
200				172 (-20% vs BAU in 2030)
150				119 (-45% vs
100				BAU in 2030)
50				
0 2020	30	40	2050)

1. Out-of-scope emissions reduction have not been modelled (e.g., agriculture, waste and other LULUCF) and account for 137Mt CO_2e of residual in 2050, based on a standard GDP growth applied to the 2020 amounts

2. Nationally Determined Contribution

BAU (Business As Usual)

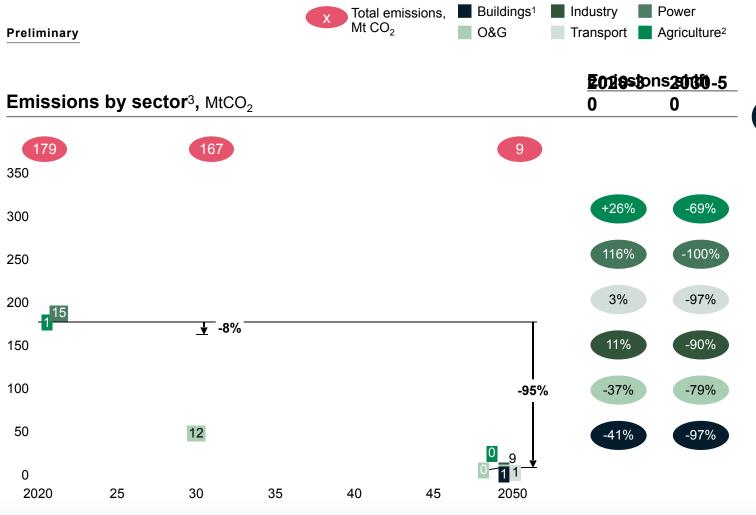
Projects emissions based on current pathway for macroeconomic development and without decarbonisation effort

Energy transition scenarios

NDC²-guided

Incorporates current national programs with decarbonisation effects:

- Strong gas up take 80% of vehicles to be CNG by 2050
- >50% of population using LPG for cooking



Net Zero 2050

Explores what it would take to get to Net Zero by 2050 to be aligned on 1.5°C pathway; main focus is a transition to full electrification of economy by 2050:

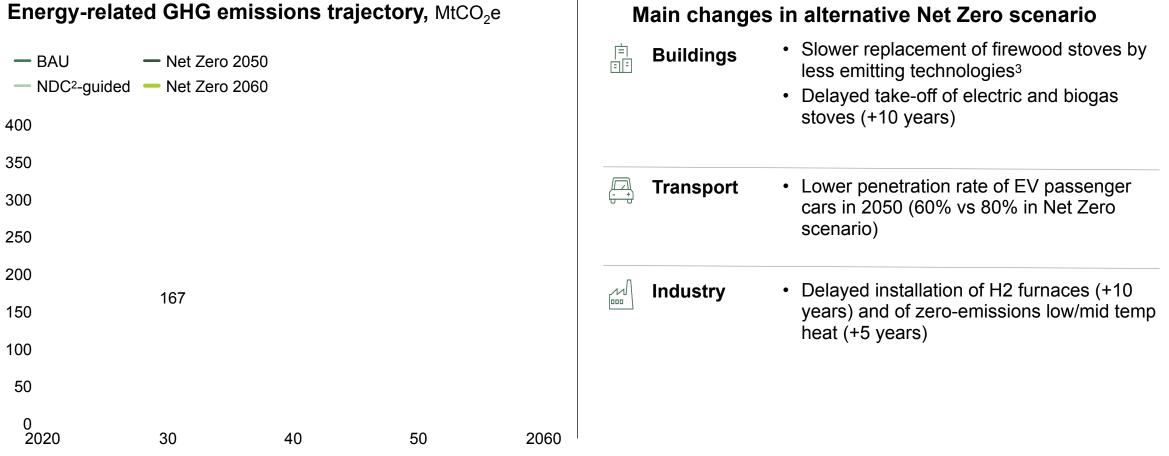
- ~250 GW of installed capacity; >90% renewable
- Electric vehicles making up 80% of fleet
- Clean cooking for >80% of the population

We have developed a Net Zero pathway aligned with the rest of the world (i.e. Net Zero 2050)

1. Includes LULUCF emissions from firewood removal

2. Energy emissions only

3. Non-energy agriculture, waste and other LULUCF emissions are outside scope and not shown here


4. Model for Net Zero scenario uses Nigerian oil production trajectory under a global 1.5°C scenario

Key drivers of emissions

For each sector, Net Zero focuses on the technology that will maximise emission reduction

- Buildings: emissions decrease by ~98% by 2050, is primarily driven by shift to electric and biogas-based cooking
- Oil & Gas: emissions decrease by ~87% by 2050 primarily driven by global response to climate change⁴
- Industry: emissions decrease by ~97% despite ~100% growth in industrial sector due to decarbonisation efforts in cement and ammonia production and 100% shift to zero emission fuels for heating
- Transport: emissions decrease by ~97% due to uptake of EVs in passenger car segment
- Power: emissions increase of ~116% by 2030 as gas use increases due to higher electricity demand. Post-2030 solar increases and starts to replace gas leading to 100% emission reduction by 2050

A more realistic pathway for Nigeria to deep decarbonization could land on Net Zero by 2060

1. Out-of-scope emissions reduction have not been modelled (e.g., agriculture, waste and other LULUCF) and account for 278 Mt CO₂e of residual in 2070

2. Nationally Determined Contribution

3. Incl. LPG, efficient firewood, electric and biogas cook stoves

Several key decisions will necessitate key actions across sectors (1/2)

	Decision	Comments
Overall ambition	Nigeria to target Net Zero by 2060	 Buildout of ~5 GW p.a. solar capacity; Total energy transition cost of ~\$400bn; or approximately ~\$10bn p.a.
Power	Nigeria must have a joint focus on both the short term and the long term in the power sector, to ensure a large scale build out of both gas and solar capacity	 42 GW of centralized capacity, including 8 GW of utility-scale solar and 14 GW of gas-fired generation by 2030; 6.3GW of decentralized renewable capacity build up required by 2030
Buildings	Nigeria should continue to drive the Nigeria Gas Expansion Program Track 2 (LPG penetration), to allow gas utilization through medium term; prior to transitioning to carbon neutral cooking	 LPG is the cheapest and most pragmatic energy source for cleaner cooking, but not carbon neutral Net Zero 2060 pathway creates additional 10-year runway for gas utilization via LPG through 2040s
Transport	Nigeria should prioritize laying the foundation for electric vehicles vs. CNG conversion	 Recent World Bank reviews of CNG conversion plan suggests costs may be considerably higher than expected to support scale-up In a Net Zero scenario, 80% of passenger cars transition to EV, presenting risk of having a high cost, stranded CNG infrastructure base

Several key decisions will necessitate key actions across sectors (2/2)

	Decision	Comments
Oil and Gas	FGN should encourage decarbonization of the oil and gas sector and prioritize the successful delivery of the Decade of Gas initiatives to support utilization of gas through 2030 FGN should focus on ensuring that new industrial capacities be built with least carbon intensive processing (high-heat processes, cement and ammonia)	 Current production in Nigeria is ~1.7mmbbls/d, with a target to increase to 3mmbl/d The sector accounts for 11% (19MT CO2e) of in-scope emissions, at current production levels LPG and gas-to-power are near term levers for gas utilization and decarbonization, and should be prioritized during Nigeria's Decade of Gas Upstream gas projects supporting Nigeria's Decade of Gas (2030) should be prioritized; post 2030 many upstream projects may become stranded as country moves to Net Zero Blue hydrogen is a potential option for provision of future fuel and continued gas demand Industry accounts for 16% of GHG emissions Need to incentivize industrial companies to change processes (financial and regulatory) High CAPEX for creating alternative fuel sources at scale required potentially requiring financial support to improve energy efficiency Need to build out hydrogen market post-2030
Financing	FGN will need to finance a portion of the transition , but will need the support of key funding partners to fund the balance	 Financing the energy transition will entail significant public investment. It is estimated that ~\$5 – 6Bn p.a. of public funding would be required to achieve Net Zero targets, in comparison to Nigeria's 2020 federal budget of ~\$35Bn Significant potential financial support available from donors / DFIs

There are a number of important implications of Nigeria's Net Zero 2060 pathway

NOT EXHAUSTIVE

	Key implications
Costs	 ~\$410bn in incremental funding required to fund the transition between 2021 – 2060, translating to an average of \$10bn p.a. over the time period
K F1	 Public sector funding requirement estimated to be \$5 – 6bn p.a.
Gas	 Gas commercialization by 2030 to expand by +30% vs. 2019, driven by LPG penetration for clean cooking and gas to power
ΠI	 By 2060, gas commercialization to fall by ~50%, driven largely by decreasing global fossil fue demand, increasing contribution of renewable power, and shift to carbon neutral cooking
Jobs	 Net Zero 2060 expected to create 840K net jobs by 2060
\bigcirc	 Job creation mainly driven by power and buildings sectors due to deployment of decentralized solar and clean cook stove distribution
	 Transport creating significant amount of jobs only after 2030 due to late uptake of EVs and low infrastructure needs for CNG/LPG fueling stations

Nigeria could leverage this work in two complementary ways to build international leadership regarding energy transition

Sot the example for African countries

Opportunity to establish a clear narrative around what a developing-country-specific "ambitious yet feasible" decarbonization goal and pathway looks like (factoring in overall socio-economic development journey, institutional capabilities, public balance sheets etc.)

Re-set the discussions around international support to transition and build a "new deal on climate finance"

Opportunity for Nigeria to re-set the discussions around climate finance commitments from developed world for developing countries, by providing a clear commitment to an emission reduction journey, backed up by robust decarbonization pathway and translated into nearterm action commitments / milestones, "in exchange" for clear commitments from development partners

These opportunities can be seized by Nigeria alone or by mobilizing other African countries to lead the region in a coordinated / single voice manner